基于MySQL的企业专利数据高效查询与统计实现
背景
在进行产业链/产业评估工作时,我们需要对企业的专利进行评估,其中一个重要指标是统计企业每一年的专利数量。本文基于MySQL数据库,通过公司名称查询该公司每年的专利数,实现了高效的专利数据统计。
流程

项目流程概述如下:
目标:根据给定的企业名单,查询出每个企业每年的专利数量及专利得分。
任务分为两步:
- 构建专利申请人数据表;
- 利用Python查询并导出数据至Excel表。
难点与注意事项⚠️:
-
设计高效的专利申请人数据表,以便通过申请人名称快速查询专利信息。
-
编写高效的企业专利SQL查询语句。
-
确定专利得分:考虑到一项专利可能有多个申请人,根据申请人的位置来定义不同的得分公式。
专利得分公式: s c o r e = 1 p o s i t i o n \text{专利得分公式: } score = \frac{1}{position} 专利得分公式: score=position1
构建专利申请人数据表
专利数据库相关的文章:3500多万家专利数据存入MySQL数据库。
由于专利数据包含超过3000万条记录,且每项专利可能有多位申请人,直接检索是否包含目标申请人效率较低。因此,我们构建了一个专利申请人表(patent_p),将每个申请人作为单独的记录,并对申请人字段建立索引,便于快速查询。表结构如下:
CREATE TABLE patent_p (id INT AUTO_INCREMENT PRIMARY KEY,applicant VARCHAR(255),publication_number VARCHAR(31),application_date DATE,publication_date DATE,grant_publication_date DATE,score DOUBLE
);
字段说明:
- 专利公开号:作为专利的唯一标识符,便于后续关联专利表。
- 申请人:每条记录仅包含一个申请人,以便在此字段上建立索引,加速检索。
- 日期字段:用于按照年份筛选专利数据。
注意:原始专利表中的申请人可能有多位,故在
专利申请人表中将每个申请人独立存储,再对申请人字段建立索引,从而大幅提升检索效率。
处理申请人拆分的代码如下所示:
def filter_company(applicant):"""从原始的多个申请人,拆分成一个一个的申请人"""if applicant is None or not isinstance(applicant, str):return []split_pattern = r"[;;]"applicant = re.split(split_pattern, applicant)applicant = map(str.strip, applicant)return list(filter(lambda x: len(x) >= 4, applicant))
具体的数据导入代码:
import os
import re
import pymysql
import pandas as pd
from tqdm import tqdmPASSWORD = "数据库密码"
DATABASE = "数据库名"# 专利字段映射
Patent_Table_Column = {"申请人": "applicant","专利公开号": "publication_number","申请日": "application_date","申请公布日": "publication_date","授权公布日": "grant_publication_date",
}def filter_company(applicant):"""提取中文公司名称,并去除空格"""if applicant is None or not isinstance(applicant, str):return []split_pattern = r"[;;]"applicant = re.split(split_pattern, applicant)applicant = map(str.strip, applicant)return list(filter(lambda x: len(x) >= 4, applicant))def insert_sql_by_csv(file_name):df = pd.read_csv(file_name, low_memory=False)BATCH_SIZE = 3000table_column_en = list(Patent_Table_Column.values())# 连接到MySQL数据库connection = pymysql.connect(host="localhost", # MySQL数据库的主机user="root", # MySQL用户名password=PASSWORD, # MySQL密码database=DATABASE, # 你要插入数据的数据库charset="utf8mb4",cursorclass=pymysql.cursors.DictCursor,)try:with connection.cursor() as cursor:sql = f"""INSERT INTO patent_p ({", ".join(table_column_en)}, score) VALUES (%s, %s, %s, %s, %s, %s);""".strip()batch_data = []for _, row in tqdm(df.iterrows(), total=len(df)):d = {}applicants = []for zh_k, en_k in Patent_Table_Column.items():item = row[zh_k]if pd.isna(item):item = Noneif zh_k == "申请人":applicants = filter_company(item)else:d[en_k] = itemfor pos, applicant in enumerate(applicants):d["applicant"] = applicantd["score"] = 1 / (pos + 1)tmp_values = tuple([d[k] for k in table_column_en + ["score"]])batch_data.append(tmp_values)if len(batch_data) >= BATCH_SIZE:cursor.executemany(sql, batch_data)# 清空批次batch_data = []if batch_data:cursor.executemany(sql, batch_data)connection.commit()except Exception as e:print(f"插入数据时出现错误: {e}")connection.rollback()finally:connection.close()if __name__ == "__main__":folder = "/xxx/3571万专利申请全量数据1985-2022年/"print(f"文件总数: {len(os.listdir(folder))}")cnt = 0for file_name in os.listdir(folder):if file_name.endswith(".csv"):cnt += 1filename = os.path.join(folder, file_name)print(cnt, file_name)insert_sql_by_csv(filename)
该表建成后的效果如下所示:

在数据插入完成后,再添加索引:
如果先添加索引再插入大量数据,速度会很慢;数据全部插入完成后,再添加索引速度会快很多。
使用以下SQL语句为 applicant 添加索引:
CREATE INDEX idx_applicant ON patent_p(applicant);
这条语句会在 patent_p 表的 applicant 列上创建一个索引 idx_applicant,从而提高在该列上进行查询的效率。若不添加索引,查询需要耗时7s左右,添加索引后,在毫秒级别就可以查出结果。
企业专利查询
在构建完企业信息数据库后,我们添加了公司的年度专利统计数据(2016年至2022年各年专利数量及总得分)。最终查询效果如下:

示例SQL查询语句:
SELECT applicant AS company_name, YEAR(application_date) AS year, COUNT(*) AS cnt, SUM(score)
FROM patent_p
WHERE applicant='深圳大学'
GROUP BY YEAR(application_date);
查询结果如下所示:

查询结果解释
该查询语句的作用如下:
-
select 子句:
applicant as company_name:将applicant列重命名为company_name,表示公司名称。YEAR(application_date) as year:提取application_date的年份,并将其命名为year。count(*) as cnt:计算每年提交的专利申请数量。sum(score):计算该公司每年所有专利申请的得分总和。
-
from 子句:从
patent_p表中获取数据。 -
where 子句:筛选出
applicant字段值等于指定公司名称的记录。 -
group by 子句:按
application_date的年份分组,统计每年的数据。
该查询将返回指定公司每年专利申请数量(cnt)及年度专利得分(sum(score))。具体Python代码实现如下:
import os
import pandas as pd
import pymysql
# import argparsedatabase = "数据库名"
password = "数据库密码"connection = pymysql.connect(host="localhost", # MySQL数据库的主机user="root", # MySQL用户名password=password, # MySQL密码database=database, # 插入数据的数据库charset="utf8mb4",cursorclass=pymysql.cursors.DictCursor,
)columns = list(range(1985, 2024)) + ["专利件数", "专利得分"]def get_patent_statistics_by_name(name):if not name:return {}sql = f"""select applicant as company_name, YEAR(application_date) as year, count(*) as cnt, sum(score) from patent_p where applicant='{name}'group by YEAR(application_date);"""with connection.cursor() as cursor:data = cursor.execute(sql)data = cursor.fetchall()ans = {}cnt = 0score = 0for k in columns:ans[k] = Nonefor item in data:cnt += item.get("cnt", 0)score += item.get("sum(score)", 0)year = item.get("year", None)if year:ans[year] = item.get("cnt", 0)ans["专利得分"] = scoreans["专利件数"] = cntreturn pd.Series(ans)def add_patent_data(input_file, company_name_field="企业名称"):print("open", input_file)# 读取 CSV 文件df = pd.read_csv(input_file, low_memory=False)df[columns] = df[company_name_field].apply(get_patent_statistics_by_name)folder_path = os.path.dirname(input_file)output_file = os.path.basename(input_file).split(".")[0] + "_专利统计.xlsx"# 保存更新后的数据到 CSV 文件output_file = os.path.join(folder_path, output_file)df.to_excel(output_file, index=False)print(f"专利数据已成功添加到文件:{output_file}")if __name__ == "__main__":# parser = argparse.ArgumentParser(description="Add patent counts to industry.csv")# parser.add_argument("input_file", help="The input CSV file with industry data")# parser.add_argument(# "-name", "--name", default="企业名称", help="The column name for company names"# )# args = parser.parse_args()# # 调用函数处理文件# add_patent_data(args.input_file, args.name)folder = "/.../pku_industry/csv_folder_test"for file in os.listdir(folder):if not file.endswith(".csv"):continuefile_name = os.path.join(folder, file)add_patent_data(file_name)connection.close()
经过上述专利申请人表的构建流程,能够大幅提升企业专利信息的检索速度,为产业链分析提供强大的数据支持。
相关文章:
基于MySQL的企业专利数据高效查询与统计实现
背景 在进行产业链/产业评估工作时,我们需要对企业的专利进行评估,其中一个重要指标是统计企业每一年的专利数量。本文基于MySQL数据库,通过公司名称查询该公司每年的专利数,实现了高效的专利数据统计。 流程 项目流程概述如下&…...
热成像手机VS传统热成像仪:AORO A23为何更胜一筹?
热成像技术作为一种非接触式测温方法,广泛应用于石油化工巡检、电力巡检、应急救援、医疗、安防等“危、急、特”场景。提及热成像设备,人们往往会首先想到价格高昂、操作复杂且便携性有限的热成像仪。但是,随着技术的不断进步,市…...
Spring IoC——依赖注入
1. 依赖注入的介绍 DI,也就是依赖注入,在容器中建立的 bean (对象)与 bean 之间是有依赖关系的,如果直接把对象存在 IoC 容器中,那么就都是一个独立的对象,通过建立他们的依赖关系,…...
Linux 中,flock 对文件加锁
在Linux中,flock是一个用于对文件加锁的实用程序,它可以帮助协调多个进程对同一个文件的访问,避免出现数据不一致或冲突等问题。以下是对flock的详细介绍: 基本原理 flock通过在文件上设置锁来控制多个进程对该文件的并发访问。…...
CentOS下载ISO镜像的方法
步骤 1:访问CentOS官方网站 首先,打开浏览器,输入CentOS的官方网站地址:Download 在网站上找到ISO镜像的下载链接,通常位于“Downloads”或类似的页面上。 选择所需的CentOS版本和架构(如x86_64…...
Node.js 入门指南:从零开始构建全栈应用
🌈个人主页:前端青山 🔥系列专栏:node.js篇 🔖人终将被年少不可得之物困其一生 依旧青山,本期给大家带来node.js篇专栏内容:node.js-入门指南:从零开始构建全栈应用 前言 大家好,我是青山。作…...
MYSQL 真实高并发下的死锁
https://pan.baidu.com/s/1nM3VQdbkNZhnK-wWboEYxA?pwdvwu6 下面是风控更新语句 ------------------------ LATEST DETECTED DEADLOCK ------------------------ 2023-08-04 01:00:10 140188779017984 *** (1) TRANSACTION: TRANSACTION 895271870, ACTIVE 0 sec starting …...
Zookeeper 简介 | 特点 | 数据存储
1、简介 zk就是一个分布式文件系统,不过存储数据的量极小。 1. zookeeper是一个为分布式应用程序提供的一个分布式开源协调服务框架。是Google的Chubby的一个开源实现,是Hadoop和Hbase的重要组件。主要用于解决分布式集群中应用系统的一致性问题。 2. 提…...
设计模式之结构型模式---装饰器模式
目录 1.概述2.类图3.应用场景及优缺点3.1 应用场景3.2 优缺点3.2.1 优点3.2.2 缺点 4.实现4.1 案例类图4.2 代码实现4.2.1 定义抽象构建角色4.2.2 定义具体构建角色4.2.3 定义抽象装饰器角色4.2.4 定义具体装饰角色4.2.5 装饰器模式的使用 1.概述 装饰器模式是指在不改变现有对…...
Android Pair
Pair在Android中是一种轻量级的工具类,并不是严格意义上的数据结构。 数据结构是一组有组织的方式来存储和管理数据的方式,如数组、链表、栈、队列、树、图等,它们有自己的特性和操作规则。而Pair更像是一个简单的封装,用于在需要…...
华为荣耀曲面屏手机下面空白部分设置颜色的方法
荣耀部分机型下面有一块空白区域,如下图红框部分 设置这部分的颜色需要在themes.xml里面设置navigationBarColor属性 <item name"android:navigationBarColor">android:color/white</item>...
《C#语法一篇通》,有20万字,需8MB字节,宜48小时阅读,没准会继续完善
本文摘录了C#语法的主要内容,接近20万字。 所有鸡汤的味道都等于马尿! 如果你相信任何所谓的鸡汤文章,智商堪忧。 计算机语言没有”好不好“之说,骗子才会告诉你哪个语言好,学好任何一本基础语言(C&#…...
嵌入式硬件工程师的职业发展规划
嵌入式硬件工程师可以按照以下阶段进行职业发展规划: 1. **初级阶段(1-3 年) ** - **技术学习与积累**: **电路基础强化**: 深入学习模拟电路和数字电路知识,能够熟练分析和设计基本的电路,…...
QT for android 问题总结(QT 5.15.2)
1.配置好的sdk,显示设置失败 Android SDK Command-line Tools run. Android Platform-Tools installed. Command-line Tools (latest) 版本过高导致报错 ,下载一个低版本的latest ,替换掉之前latest中的文件。即可,latest 路径如…...
PyTorch实战-手写数字识别-MLP模型
1 需求 包懂,40分钟掌握PyTorch深度学习框架,对应神经网络算法理论逐行讲解用PyTorch实现图像分类代码_哔哩哔哩_bilibili 10分钟入门神经网络 PyTorch 手写数字识别_哔哩哔哩_bilibili pytorch tutorial: PyTorch 手写数字识别 教程代码 从零设计并训…...
(附项目源码)Java开发语言,基于Java的高校实验室教学管理系统的设计与开发 50,计算机毕设程序开发+文案(LW+PPT)
摘 要 随着高校实验室教学与管理的复杂性增加,传统的手动管理系统已经无法满足日益增长的需求。实验室教学不仅涉及到学生的教学安排和管理,还需要对实验设备、实验材料、实验室资源等进行有效的调配和管理。而目前实验室教学管理的各项工作,…...
【日常问题排查小技巧-连载】
线上服务CPU飙高排查 先执行 top,找到CPU占用比较高的进程 id,(比如 21448) jstack 进程 id > show.txt(jstack 21448 > show.txt) 找到进程中CPU占用比较高的线程,线程 id 转换为 16 进…...
elastic search查找字段的方法
一,比如:elastic search 查找id为“ien9292voewew”的方法 此id为主键id,意思就是唯一id,在ES中是_id, 在 Elasticsearch 中,如果你想要查找特定 ID 的文档,可以使用 _get API。以下是如何通过 RESTful 请求或使用 Python 客户端来查找 ID 为 ien9292voewew 的文档的方…...
MATLAB下的四个模型的IMM例程(CV、CT左转、CT右转、CA四个模型),附下载链接
基于IMM算法的目标跟踪。利用卡尔曼滤波和多模型融合技术,能够在含噪声的环境中提高估计精度,带图像输出 文章目录 概述源代码运行结果代码结构与功能1. 初始化2. 仿真参数设置3. 模型参数设置4. 生成量测数据5. IMM算法初始化6. IMM迭代7. 绘图8. 辅助函…...
无人机之中继通信技术篇
一、定义与原理 无人机中继通信技术是指通过无人机搭载中继设备,将信号从一个地点传输到另一个地点,从而延长通信距离并保持较好的通信质量。其原理类似于传统的中继通信,即在两个终端站之间设置若干中继站,中继站将前站送来的信号…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...
