基于MySQL的企业专利数据高效查询与统计实现
背景
在进行产业链/产业评估工作时,我们需要对企业的专利进行评估,其中一个重要指标是统计企业每一年的专利数量。本文基于MySQL数据库,通过公司名称查询该公司每年的专利数,实现了高效的专利数据统计。
流程
项目流程概述如下:
目标:根据给定的企业名单,查询出每个企业每年的专利数量及专利得分。
任务分为两步:
- 构建专利申请人数据表;
- 利用Python查询并导出数据至Excel表。
难点与注意事项⚠️:
-
设计高效的专利申请人数据表,以便通过申请人名称快速查询专利信息。
-
编写高效的企业专利SQL查询语句。
-
确定专利得分:考虑到一项专利可能有多个申请人,根据申请人的位置来定义不同的得分公式。
专利得分公式: s c o r e = 1 p o s i t i o n \text{专利得分公式: } score = \frac{1}{position} 专利得分公式: score=position1
构建专利申请人数据表
专利数据库相关的文章:3500多万家专利数据存入MySQL数据库。
由于专利数据包含超过3000万条记录,且每项专利可能有多位申请人,直接检索是否包含目标申请人效率较低。因此,我们构建了一个专利申请人
表(patent_p
),将每个申请人作为单独的记录,并对申请人字段建立索引,便于快速查询。表结构如下:
CREATE TABLE patent_p (id INT AUTO_INCREMENT PRIMARY KEY,applicant VARCHAR(255),publication_number VARCHAR(31),application_date DATE,publication_date DATE,grant_publication_date DATE,score DOUBLE
);
字段说明:
- 专利公开号:作为专利的唯一标识符,便于后续关联专利表。
- 申请人:每条记录仅包含一个申请人,以便在此字段上建立索引,加速检索。
- 日期字段:用于按照年份筛选专利数据。
注意:原始专利表中的申请人可能有多位,故在
专利申请人
表中将每个申请人独立存储,再对申请人字段建立索引,从而大幅提升检索效率。
处理申请人拆分的代码如下所示:
def filter_company(applicant):"""从原始的多个申请人,拆分成一个一个的申请人"""if applicant is None or not isinstance(applicant, str):return []split_pattern = r"[;;]"applicant = re.split(split_pattern, applicant)applicant = map(str.strip, applicant)return list(filter(lambda x: len(x) >= 4, applicant))
具体的数据导入代码:
import os
import re
import pymysql
import pandas as pd
from tqdm import tqdmPASSWORD = "数据库密码"
DATABASE = "数据库名"# 专利字段映射
Patent_Table_Column = {"申请人": "applicant","专利公开号": "publication_number","申请日": "application_date","申请公布日": "publication_date","授权公布日": "grant_publication_date",
}def filter_company(applicant):"""提取中文公司名称,并去除空格"""if applicant is None or not isinstance(applicant, str):return []split_pattern = r"[;;]"applicant = re.split(split_pattern, applicant)applicant = map(str.strip, applicant)return list(filter(lambda x: len(x) >= 4, applicant))def insert_sql_by_csv(file_name):df = pd.read_csv(file_name, low_memory=False)BATCH_SIZE = 3000table_column_en = list(Patent_Table_Column.values())# 连接到MySQL数据库connection = pymysql.connect(host="localhost", # MySQL数据库的主机user="root", # MySQL用户名password=PASSWORD, # MySQL密码database=DATABASE, # 你要插入数据的数据库charset="utf8mb4",cursorclass=pymysql.cursors.DictCursor,)try:with connection.cursor() as cursor:sql = f"""INSERT INTO patent_p ({", ".join(table_column_en)}, score) VALUES (%s, %s, %s, %s, %s, %s);""".strip()batch_data = []for _, row in tqdm(df.iterrows(), total=len(df)):d = {}applicants = []for zh_k, en_k in Patent_Table_Column.items():item = row[zh_k]if pd.isna(item):item = Noneif zh_k == "申请人":applicants = filter_company(item)else:d[en_k] = itemfor pos, applicant in enumerate(applicants):d["applicant"] = applicantd["score"] = 1 / (pos + 1)tmp_values = tuple([d[k] for k in table_column_en + ["score"]])batch_data.append(tmp_values)if len(batch_data) >= BATCH_SIZE:cursor.executemany(sql, batch_data)# 清空批次batch_data = []if batch_data:cursor.executemany(sql, batch_data)connection.commit()except Exception as e:print(f"插入数据时出现错误: {e}")connection.rollback()finally:connection.close()if __name__ == "__main__":folder = "/xxx/3571万专利申请全量数据1985-2022年/"print(f"文件总数: {len(os.listdir(folder))}")cnt = 0for file_name in os.listdir(folder):if file_name.endswith(".csv"):cnt += 1filename = os.path.join(folder, file_name)print(cnt, file_name)insert_sql_by_csv(filename)
该表建成后的效果如下所示:
在数据插入完成后,再添加索引:
如果先添加索引再插入大量数据,速度会很慢;数据全部插入完成后,再添加索引速度会快很多。
使用以下SQL语句为 applicant
添加索引:
CREATE INDEX idx_applicant ON patent_p(applicant);
这条语句会在 patent_p
表的 applicant
列上创建一个索引 idx_applicant
,从而提高在该列上进行查询的效率。若不添加索引,查询需要耗时7s左右,添加索引后,在毫秒级别就可以查出结果。
企业专利查询
在构建完企业信息数据库后,我们添加了公司的年度专利统计数据(2016年至2022年各年专利数量及总得分)。最终查询效果如下:
示例SQL查询语句:
SELECT applicant AS company_name, YEAR(application_date) AS year, COUNT(*) AS cnt, SUM(score)
FROM patent_p
WHERE applicant='深圳大学'
GROUP BY YEAR(application_date);
查询结果如下所示:
查询结果解释
该查询语句的作用如下:
-
select 子句:
applicant as company_name
:将applicant
列重命名为company_name
,表示公司名称。YEAR(application_date) as year
:提取application_date
的年份,并将其命名为year
。count(*) as cnt
:计算每年提交的专利申请数量。sum(score)
:计算该公司每年所有专利申请的得分总和。
-
from 子句:从
patent_p
表中获取数据。 -
where 子句:筛选出
applicant
字段值等于指定公司名称的记录。 -
group by 子句:按
application_date
的年份分组,统计每年的数据。
该查询将返回指定公司每年专利申请数量(cnt
)及年度专利得分(sum(score)
)。具体Python代码实现如下:
import os
import pandas as pd
import pymysql
# import argparsedatabase = "数据库名"
password = "数据库密码"connection = pymysql.connect(host="localhost", # MySQL数据库的主机user="root", # MySQL用户名password=password, # MySQL密码database=database, # 插入数据的数据库charset="utf8mb4",cursorclass=pymysql.cursors.DictCursor,
)columns = list(range(1985, 2024)) + ["专利件数", "专利得分"]def get_patent_statistics_by_name(name):if not name:return {}sql = f"""select applicant as company_name, YEAR(application_date) as year, count(*) as cnt, sum(score) from patent_p where applicant='{name}'group by YEAR(application_date);"""with connection.cursor() as cursor:data = cursor.execute(sql)data = cursor.fetchall()ans = {}cnt = 0score = 0for k in columns:ans[k] = Nonefor item in data:cnt += item.get("cnt", 0)score += item.get("sum(score)", 0)year = item.get("year", None)if year:ans[year] = item.get("cnt", 0)ans["专利得分"] = scoreans["专利件数"] = cntreturn pd.Series(ans)def add_patent_data(input_file, company_name_field="企业名称"):print("open", input_file)# 读取 CSV 文件df = pd.read_csv(input_file, low_memory=False)df[columns] = df[company_name_field].apply(get_patent_statistics_by_name)folder_path = os.path.dirname(input_file)output_file = os.path.basename(input_file).split(".")[0] + "_专利统计.xlsx"# 保存更新后的数据到 CSV 文件output_file = os.path.join(folder_path, output_file)df.to_excel(output_file, index=False)print(f"专利数据已成功添加到文件:{output_file}")if __name__ == "__main__":# parser = argparse.ArgumentParser(description="Add patent counts to industry.csv")# parser.add_argument("input_file", help="The input CSV file with industry data")# parser.add_argument(# "-name", "--name", default="企业名称", help="The column name for company names"# )# args = parser.parse_args()# # 调用函数处理文件# add_patent_data(args.input_file, args.name)folder = "/.../pku_industry/csv_folder_test"for file in os.listdir(folder):if not file.endswith(".csv"):continuefile_name = os.path.join(folder, file)add_patent_data(file_name)connection.close()
经过上述专利申请人表
的构建流程,能够大幅提升企业专利信息的检索速度,为产业链分析提供强大的数据支持。
相关文章:

基于MySQL的企业专利数据高效查询与统计实现
背景 在进行产业链/产业评估工作时,我们需要对企业的专利进行评估,其中一个重要指标是统计企业每一年的专利数量。本文基于MySQL数据库,通过公司名称查询该公司每年的专利数,实现了高效的专利数据统计。 流程 项目流程概述如下&…...

热成像手机VS传统热成像仪:AORO A23为何更胜一筹?
热成像技术作为一种非接触式测温方法,广泛应用于石油化工巡检、电力巡检、应急救援、医疗、安防等“危、急、特”场景。提及热成像设备,人们往往会首先想到价格高昂、操作复杂且便携性有限的热成像仪。但是,随着技术的不断进步,市…...

Spring IoC——依赖注入
1. 依赖注入的介绍 DI,也就是依赖注入,在容器中建立的 bean (对象)与 bean 之间是有依赖关系的,如果直接把对象存在 IoC 容器中,那么就都是一个独立的对象,通过建立他们的依赖关系,…...

Linux 中,flock 对文件加锁
在Linux中,flock是一个用于对文件加锁的实用程序,它可以帮助协调多个进程对同一个文件的访问,避免出现数据不一致或冲突等问题。以下是对flock的详细介绍: 基本原理 flock通过在文件上设置锁来控制多个进程对该文件的并发访问。…...

CentOS下载ISO镜像的方法
步骤 1:访问CentOS官方网站 首先,打开浏览器,输入CentOS的官方网站地址:Download 在网站上找到ISO镜像的下载链接,通常位于“Downloads”或类似的页面上。 选择所需的CentOS版本和架构(如x86_64…...

Node.js 入门指南:从零开始构建全栈应用
🌈个人主页:前端青山 🔥系列专栏:node.js篇 🔖人终将被年少不可得之物困其一生 依旧青山,本期给大家带来node.js篇专栏内容:node.js-入门指南:从零开始构建全栈应用 前言 大家好,我是青山。作…...

MYSQL 真实高并发下的死锁
https://pan.baidu.com/s/1nM3VQdbkNZhnK-wWboEYxA?pwdvwu6 下面是风控更新语句 ------------------------ LATEST DETECTED DEADLOCK ------------------------ 2023-08-04 01:00:10 140188779017984 *** (1) TRANSACTION: TRANSACTION 895271870, ACTIVE 0 sec starting …...

Zookeeper 简介 | 特点 | 数据存储
1、简介 zk就是一个分布式文件系统,不过存储数据的量极小。 1. zookeeper是一个为分布式应用程序提供的一个分布式开源协调服务框架。是Google的Chubby的一个开源实现,是Hadoop和Hbase的重要组件。主要用于解决分布式集群中应用系统的一致性问题。 2. 提…...

设计模式之结构型模式---装饰器模式
目录 1.概述2.类图3.应用场景及优缺点3.1 应用场景3.2 优缺点3.2.1 优点3.2.2 缺点 4.实现4.1 案例类图4.2 代码实现4.2.1 定义抽象构建角色4.2.2 定义具体构建角色4.2.3 定义抽象装饰器角色4.2.4 定义具体装饰角色4.2.5 装饰器模式的使用 1.概述 装饰器模式是指在不改变现有对…...
Android Pair
Pair在Android中是一种轻量级的工具类,并不是严格意义上的数据结构。 数据结构是一组有组织的方式来存储和管理数据的方式,如数组、链表、栈、队列、树、图等,它们有自己的特性和操作规则。而Pair更像是一个简单的封装,用于在需要…...

华为荣耀曲面屏手机下面空白部分设置颜色的方法
荣耀部分机型下面有一块空白区域,如下图红框部分 设置这部分的颜色需要在themes.xml里面设置navigationBarColor属性 <item name"android:navigationBarColor">android:color/white</item>...

《C#语法一篇通》,有20万字,需8MB字节,宜48小时阅读,没准会继续完善
本文摘录了C#语法的主要内容,接近20万字。 所有鸡汤的味道都等于马尿! 如果你相信任何所谓的鸡汤文章,智商堪忧。 计算机语言没有”好不好“之说,骗子才会告诉你哪个语言好,学好任何一本基础语言(C&#…...

嵌入式硬件工程师的职业发展规划
嵌入式硬件工程师可以按照以下阶段进行职业发展规划: 1. **初级阶段(1-3 年) ** - **技术学习与积累**: **电路基础强化**: 深入学习模拟电路和数字电路知识,能够熟练分析和设计基本的电路,…...

QT for android 问题总结(QT 5.15.2)
1.配置好的sdk,显示设置失败 Android SDK Command-line Tools run. Android Platform-Tools installed. Command-line Tools (latest) 版本过高导致报错 ,下载一个低版本的latest ,替换掉之前latest中的文件。即可,latest 路径如…...
PyTorch实战-手写数字识别-MLP模型
1 需求 包懂,40分钟掌握PyTorch深度学习框架,对应神经网络算法理论逐行讲解用PyTorch实现图像分类代码_哔哩哔哩_bilibili 10分钟入门神经网络 PyTorch 手写数字识别_哔哩哔哩_bilibili pytorch tutorial: PyTorch 手写数字识别 教程代码 从零设计并训…...

(附项目源码)Java开发语言,基于Java的高校实验室教学管理系统的设计与开发 50,计算机毕设程序开发+文案(LW+PPT)
摘 要 随着高校实验室教学与管理的复杂性增加,传统的手动管理系统已经无法满足日益增长的需求。实验室教学不仅涉及到学生的教学安排和管理,还需要对实验设备、实验材料、实验室资源等进行有效的调配和管理。而目前实验室教学管理的各项工作,…...

【日常问题排查小技巧-连载】
线上服务CPU飙高排查 先执行 top,找到CPU占用比较高的进程 id,(比如 21448) jstack 进程 id > show.txt(jstack 21448 > show.txt) 找到进程中CPU占用比较高的线程,线程 id 转换为 16 进…...
elastic search查找字段的方法
一,比如:elastic search 查找id为“ien9292voewew”的方法 此id为主键id,意思就是唯一id,在ES中是_id, 在 Elasticsearch 中,如果你想要查找特定 ID 的文档,可以使用 _get API。以下是如何通过 RESTful 请求或使用 Python 客户端来查找 ID 为 ien9292voewew 的文档的方…...

MATLAB下的四个模型的IMM例程(CV、CT左转、CT右转、CA四个模型),附下载链接
基于IMM算法的目标跟踪。利用卡尔曼滤波和多模型融合技术,能够在含噪声的环境中提高估计精度,带图像输出 文章目录 概述源代码运行结果代码结构与功能1. 初始化2. 仿真参数设置3. 模型参数设置4. 生成量测数据5. IMM算法初始化6. IMM迭代7. 绘图8. 辅助函…...

无人机之中继通信技术篇
一、定义与原理 无人机中继通信技术是指通过无人机搭载中继设备,将信号从一个地点传输到另一个地点,从而延长通信距离并保持较好的通信质量。其原理类似于传统的中继通信,即在两个终端站之间设置若干中继站,中继站将前站送来的信号…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...