当前位置: 首页 > news >正文

使用 map 和 reduce 提取对象数组中的 id 并组成新数组

在开发过程中,经常需要对 API 返回的数据进行处理,例如从对象数组中提取某些字段,并将它们组成新的数组。这里我们将介绍如何通过 JavaScript 的 mapreduce 方法来完成这一需求,并深入比较这两者的用法与适用场景。

需求:提取 id 字段组成新数组

假设我们有如下数据结构:

const res = {data: [{ id: 1, name: 'Alice' },{ id: 2, name: 'Bob' },{ id: 3, name: 'Charlie' }]
}

我们的目标是从 res.data 中提取每个对象的 id 字段,将它们组成一个新的数组,最终得到结果:

[1, 2, 3]

使用 map 实现需求

map 方法用于遍历数组中的每个元素,并对每个元素执行相同的操作,生成一个新数组。它的典型应用场景是逐个处理元素,创建新数组

代码示例
const ids = res.data.map(item => item.id)
console.log(ids) // 输出: [1, 2, 3]
解析
  1. map 方法会遍历 res.data 中的每个对象。
  2. 每次遍历时,item => item.id 会将对象的 id 提取出来,形成一个包含 id 的新数组。
优点
  • 简洁明了,代码可读性高。
  • 专为创建新数组而设计,适用于提取、格式化或转换数组的场景。

使用 reduce 实现需求

reduce 方法用于对数组执行累积操作,它可以生成一个最终的单一值(可以是数组、对象等)。它常用于聚合数据或进行复杂的数据处理

代码示例
const ids = res.data.reduce((accumulator, item) => {accumulator.push(item.id) // 将id推入累积数组return accumulator         // 返回更新后的累积数组
}, []) // 初始化累积值为空数组 []console.log(ids) // 输出: [1, 2, 3]
解析
  1. reduce 初始化一个空数组 [] 作为 accumulator 的初始值。
  2. 在每次遍历中,将当前元素的 id 推入到 accumulator 数组中。
  3. 最终 reduce 返回的 accumulator 数组即为目标数组 [1, 2, 3]
优点
  • 灵活性高,支持更复杂的聚合操作。
  • 适用于需要累计或合并数据的情况。

相关文章:

使用 map 和 reduce 提取对象数组中的 id 并组成新数组

在开发过程中,经常需要对 API 返回的数据进行处理,例如从对象数组中提取某些字段,并将它们组成新的数组。这里我们将介绍如何通过 JavaScript 的 map 和 reduce 方法来完成这一需求,并深入比较这两者的用法与适用场景。 需求&…...

Zero-Shot Relational Learning for Multimodal Knowledge Graphs

摘要 关系学习是知识表示领域,特别是知识图补全(KGC)领域的一项重要任务。虽然传统单模态环境下的关系学习已经得到了广泛的研究,但在多模态KGC环境下探索关系学习提出了不同的挑战和机遇。其中一个主要挑战是在没有任何相关训练…...

AUTOSAR COM 模块的主要功能导读以及示例

AUTOSAR COM 模块的主要功能 AUTOSAR COM 模块在车载系统中用于管理通信的中间层,主要功能包括: 信号传输与接收: • 提供信号打包和解包功能,将信号数据打包成协议数据单元(I-PDU)以便传输,或从接收到的…...

VMware下Centos7虚拟机数据盘/data目录(非lvm)不停机热扩容实操

实操环境 VMware:7.0 虚拟机:Centos7 (TEST-K8S-Node01) 扩容目录:/data (20G>>30G) 前置操作 注意事项:如果有条件的话,建议先做个主机的全量备份(…...

易盾增强版滑块识别/易盾识别/滑块识别/增强版滑块识别/易盾滑块本地识别

易盾增强版滑块识别 计算思路如下: 滑动条拖动距离传入 restrict 算法处理得到 初次值 J J * 率值0.309375 得到滑块偏移量。 滑块的旋转角度滑块偏移量*attrs 所以滑块偏移量滑块的旋转角度/attrs 通过滑块偏移量 求出 滑动条拖动距离 # 应用高斯模糊warped_…...

DMRl-Former用于工业过程预测建模和关键样本分析的数据模式相关可解释Transformer网络

DMRl-Former用于工业过程预测建模和关键样本分析的数据模式相关可解释Transformer网络 Liu, Diju, et al. “Data mode related interpretable transformer network for predictive modeling and key sample analysis in industrial processes.” IEEE Transactions on Indust…...

向量模型Jina Embedding: 从v1到v3论文笔记

文章目录 Jina Embedding: 从v1到v3Jina Embedding v1数据集准备训练过程 Jina Embedding v2预训练修改版BERT在文本对上微调在Hard Negatives上微调 Jina Embedding v2 双语言预训练修改版BERT在文本对上微调用多任务目标微调 Jina Embedding v3预训练在文本对上微调训练任务相…...

Spring学习笔记(一)

一 、Spring概述 (一)Spring是什么 Spring是一个分层的Java SE/EE full-stack(一站式)轻量级开源框架,以 IoC(Inverse Of Control:反转控制)和 AOP(Aspect Oriented Programming:面…...

Java编程基础

Java是一种广泛使用的编程语言,以其跨平台兼容性、面向对象的特性和健壮的安全性而闻名。本篇文章将带你了解Java编程的基础知识。 Java简介 Java是由Sun Microsystems(现在是Oracle Corporation的一部分)在1995年发布的。它是一种静态类型…...

C++【string类,模拟实现string类】

🌟个人主页:落叶 🌟当前专栏: C专栏 目录 为什么学习string类 C语言中的字符串 标准库中的string类 auto和范围for auto关键字 迭代器 范围for string类的常用接口说明和使用 1. string类对象的常见构造 2.string类对象的容量操作 3…...

Jupyter lab 打开时默认使用 Notebook 而不是浏览器

Jupyter lab 打开时默认使用 Notebook 而不是浏览器 正文 正文 今天遇到了一个特别有意思的事情,这里我们以 Windows \textrm{Windows} Windows 系统举例。 我们知道通常我们需要使用如下代码在 Terminal \textrm{Terminal} Terminal 中打开 Jupyter lab \textr…...

【linux】ubunda repo是什么

Ubuntu repo(repository,简称repo)是一个软件仓库,它是存储和分发软件包的服务器或一组服务器。通俗地说,Ubuntu repo就像一个巨大的在线软件商店,用户可以从中下载和安装各种软件。 主要特点 软件集合&a…...

【MySQL】深层理解索引及特性(重点)--下(12)

索引(重点) 1. 索引的作用2. 索引操作2.1 主键索引2.1.1 主键索引的特点2.1.2 创建主键索引 2.2 唯一键索引2.2.1 唯一键索引的特点2.2.2 唯一索引的创建 2.3 普通索引2.3.1 普通索引的特点2.3.2 普通索引的创建 2.4 全文索引2.4.1 全文索引的作用2.4.2 …...

无人机声学侦测算法详解!

一、算法原理 无人机在飞行过程中,其电机工作、旋翼震动以及气流扰动等都会产生一定程度的噪声。这些噪声具有独特的声学特征,如频率范围、时域和频域特性等,可以用于无人机的检测与识别。声学侦测算法利用这些特征,通过一系列步…...

git 提交仓库

创建 git 仓库: mkdir pySoundImage cd pySoundImage git init touch README.md git add README.md git commit -m “first commit” git remote add origin https://gitee.com/hunan-co-changsha-branch/pytest.git git push -u origin master 已有仓库&#xff…...

基于大语言模型(LLM)自主Agent 智能体综述

近年来,LLM(Large Language Model)取得了显著成功,并显示出了达到人类智能的巨大潜力。基于这种能力,使用LLM作为中央控制器来构建自助Agent,以获得类人决策能力。 Autonomous agents 又被称为智能体、Agent。指能够通过感知周围环境、进行规划以及执行动作来完成既定任务。…...

使用命令行管理 Windows 环境变量

1. 使用命令提示符 (CMD) 1.1. 设置环境变量 添加或修改临时环境变量(当前会话有效) set MY_VARvalue添加或修改用户环境变量 setx MY_VAR "value"添加或修改系统环境变量(需要管理员权限): setx /M MY…...

AUTODL配置百度网盘数据传输

AUTODL使用 1.配置百度网盘开放平台 2.接入并创建应用 3.创建应用 4.添加授权...

LeetCode46. 全排列(2024秋季每日一题 57)

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 示例 1: 输入:nums [1,2,3] 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] 示例 2: 输入:nums …...

SpringBoot新闻稿件管理系统:架构与实现

3系统分析 3.1可行性分析 通过对本新闻稿件管理系统实行的目的初步调查和分析,提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本新闻稿件管理系统采用SSM框架,JAVA作为开发语…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

Python如何给视频添加音频和字幕

在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...