当前位置: 首页 > news >正文

简易CPU设计入门:译码模块(一)

项目代码下载

还是请大家首先准备好本项目所用的源代码。如果已经下载了,那就不用重复下载了。如果还没有下载,那么,请大家点击下方链接,来了解下载本项目的CPU源代码的方法。

下载本项目代码

准备好了项目源代码以后,我们接着去讲解。

本节前言

有一段时间没写本专栏的教程了。在之前的章节里,我是讲解了系统初始化模块和取指令模块。取完了指令以后,我们来讲解译码模块。

一.   代码展示

首先呢,让我们来看一看译码模块的全部代码。

module decode_unit
(input wire sys_clk,input wire sys_rst_n,input wire decode_en,input wire [15:0] instruct_word,output reg decode_done,output reg [4:0] op_code,output reg [2:0] reserve_bit,output reg [7:0] op_rand
);always @(posedge sys_clk or negedge sys_rst_n)if (sys_rst_n == 1'b0)begindecode_done <= 1'b0;op_code <= 5'h0;reserve_bit <= 3'h0;op_rand <= 8'h0;endelse if (decode_en == 1'b1)begindecode_done <= 1'b1;op_code <= instruct_word[15:11];reserve_bit <= 3'h0;op_rand <= instruct_word[7:0];endelsebegindecode_done <= 1'b0;op_code <= op_code;reserve_bit <= reserve_bit;op_rand <= op_rand;endendmodule

不知道,是否因为,我学习电子学的Verilog HDL与数字电路的时间太短。我写完了译码模块以后,我自己都没想到,没想到译码单元竟然是这么少。译码模块,就是传说中的译码器。

在我这里,译码器模块,只有37行。

上面的代码块中的代码,位于【\cpu_me01\code】路径里面,代码文件的名字为【decode_unit.v】。

二.   输入信号

我们来看一看代码中的输入信号。

图1

图1中的3到6行,便是输入信号了。第3行与第4行,这俩是系统时钟与系统复位信号。其中,系统复位信号为低电平有效。值得关注的是第5行和第6行的译码使能信号【decode_en】与指令字信号【instruct_word】。

首先,我来说一说【字】的概念。在英特尔汇编里面,字可以指一种数据类型,它是16比特长度的整数,也就是相当于C语言中的【unsigned short】。而在学习一些个计算机技术领域的英文文档时,字往往是指连续多个比特组成的数据结构,它可能是一个字节的长度,也有可能是多个字节的长度。

在计算机技术里面,谈到字,首先它是有着一定的长度的,由连续的比特构成。第二,比特组合里面,它有着一定的格式。不同的位,或者不同的位的组合,会代表着不同的含义。

本节所述的指令字【instruct_word】,它是16位的长度,和汇编语言中的字型数据的长度相同。在这个16位的长度的比特组合里面,它包含有3个组成部分,分别是操作码,操作数和保留位。至于说,是怎么包含的,我们以后再讲。

译码使能信号【decode_en】和指令字信号【instruct_word】均来自于取指令模块的输出信号。我们来看一看它们的生成于连接情况。

图2,取指令模块

本模块中的译码信号【decode_en】和指令字信号【instruct_word】分别对应着取指令模块中的译码使能信号【decode_en】和指令码【instruct_code】信号。

从图2可以看出,当取指令模块检测到【rd_en_d1】为1的时候,取指令模块中的【decode_en】变为高电平,同时【instruct_code】信号被赋值为有效的值。还可以看到,取指令模块中的【decode_en】信号和【instruct_code】信号同时变为有效,并且译码使能信号【decode_en】仅仅维持一个时钟周期。

图2显示了取指令模块的【decode_en】和【instruct_code】信号的生成情况。接下来,我们去本项目的顶层模块【cpu_top】中查看一下连接情况。

图3,本项目顶层设计模块【cpu_top】

在图3里面,我们可以看到,我在顶层模块里面申请的几个用于连接不同模块的变量。其中呢,红色框线所示的第13行和第14行,显示了我所声明的译码使能【decode_en】信号和指令字信号【instruct_word】。

我们接着看。

图4,本项目顶层设计模块【cpu_top】

图4中,我们可以看到,取指令模块的【decode_en】和【instruct_code】信号,分别连接到顶层模块的【decode_en】和【instruct_word】变量。

我们接着看。

图5,本项目顶层设计模块【cpu_top】

如图5的红色框线所示,顶层模块中的【decode_en】与【instruct_word】分别连接到本模块的同名信号。

这样一来,我们就清楚了本模块的输入信号【decode_en】与【instruct_word】的来源了。

三.    输出信号

讲完了输入信号以后,我们再来讲解输出信号。

图1,副本

在图1副本中,我们去看8到11行的代码。这里呢,包括两部分,第一部分呢,是译码完成信号【decode_done】,第二部分,是对输入的指令字的分解出来的各部分信号,分别是操作码【op_code】,操作数【op_rand】,还有保留位。

我们还是来看一下代码。

图6,本模块的输出信号的逻辑代码

在图6中,主要是输出信号的逻辑。我们首先来看译码完成信号【decode_done】。它的逻辑,根据图6的代码,我们可以看到,当系统复位信号为低电平有效时,它是0值。当系统监测到输入信号译码使能【decode_en】为1时,译码使能信号【decode_done】被非阻塞赋值为1。然后呢,在else分支里面,【decode_done】又变为了0值。输入信号中的译码使能信号【decode_en】仅仅是维持一个时钟周期的高电平,所以呢,本模块中的【decode_done】信号也是仅仅维持着一个时钟的高电平。

也就是说,本模块的输出信号,译码完成信号【decode_done】,也是仅仅维持一个时钟周期的高电平。仅当检测到输入信号,译码使能信号【decode_en】为1时,译码完成信号【decode_done】才变为1,且仅仅维持一个时钟周期的高电平,随即又变为0值。

说完了这个译码完成信号以后,我们再来说其余的三个输出信号。

在输入信号里面,指令字信号【instruct_word】是一个16比特的信号。对于这个信号,本模块,也就是译码模块,需要将其分为三个部分。第一部分,是它的位15到位11,这一部分,我们要将其提取出来,并赋给输出信号,操作码【op_code】。第二部分,是位10到位8,我们忽略这三位的信号值,并固定地,将【3'h0】赋给输出信号,保留位【reserve_bit】。第三部分,是位7到位0,我们要将其提取出来,并赋给输出信号,操作数【op_rand】。

我们来看一看图6中,关于【op_code】,【reserve_bit】与【op_rand】的情形,基本上与我的讲述是一致的。。

操作码【op_code】,保留位【reserve_bit】和操作数【op_rand】,在系统复位信号为有效的低电平时,均为0值。而在检测到高电平有效的译码使能信号【decode_en】以后,将输入的指令字信号【instruct_word】的位选 [15:11] 赋给了【op_code】,将保留位 【reserve_bit】设置为固定的【3'h0】,将【instruct_word】的位选 [7:0] 赋给了【op_rand】。当仅仅维持一个有效的高电平信号,译码使能信号变为低电平时,操作码【op_code】,保留位【reserve_bit】和操作数【op_rand】维持不变。

 四.    本模块总体逻辑

本模块的总体逻辑其实很简单。就是将输入信号【instruct_word】的位选 [15:11] 与位选 [7:0] 提取出来,并分别赋给操作码信号【op_code】和操作数信号【op_rand】。而对于保留位,则固定地将其设置为【3'h0】。

本模块的逻辑还是很简单的。

结束语

到了这里,本节也就该结束了。然后呢,按照以往的经验,我们又该去编写验证代码了。这一块,我觉得,其实写不写验证都是那么回事。因为本模块的逻辑真的很简单。

对于本模块,我就不去写test bench代码了。

验证代码虽然不写了,我们还是会有其他的任务。

到了这里,由于取指令和译码模块,我都讲完了,我也讲过了本项目的机器码格式,那么,接下来,我打算来讲一讲,我在本系统里面,往指令ram中写入了哪些指令。

下一节开始,我们要来看一看,本系统所要执行的几条机器指令。当然了,在后面,我也会讲到,如何来将你想要去执行的指令,写入指令ram中。

本节结束。

相关文章:

简易CPU设计入门:译码模块(一)

项目代码下载 还是请大家首先准备好本项目所用的源代码。如果已经下载了&#xff0c;那就不用重复下载了。如果还没有下载&#xff0c;那么&#xff0c;请大家点击下方链接&#xff0c;来了解下载本项目的CPU源代码的方法。 下载本项目代码 准备好了项目源代码以后&#xff…...

力扣题目解析--三数之和

题目 给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请你返回所有和为 0 且不重复的三元组。 注意&#xff1a;答案中不可以包含重复的三元组。 示…...

qt QTabWidget详解

1、概述 QTabWidget是Qt框架中的一个控件&#xff0c;它提供了一个标签页式的界面&#xff0c;允许用户在不同的页面&#xff08;或称为标签&#xff09;之间切换。每个页面都可以包含不同的内容&#xff0c;如文本、图像、按钮或其他小部件。QTabWidget非常适合用于创建具有多…...

linux shell脚本学习(1):shell脚本基本概念与操作

1.什么是shell脚本 linux系统中&#xff0c;shell脚本或称之为bash shell程序&#xff0c;通常是由vim编辑&#xff0c;由linux命令、bash shell指令、逻辑控制语句、注释信息组成的可执行文件 *linux中常以.sh后缀作为shell脚本的后缀。linux系统中文件乃至脚本的后缀并没有…...

Savitzky-Golay(SG)滤波器

Savitzky-Golay&#xff08;SG&#xff09;滤波器是一种在时域内基于局域多项式最小二乘法拟合的滤波方法&#xff0c;它最初由Savitzky A和Golay M于1964年提出&#xff0c;并广泛应用于数据流平滑除噪。 基本介绍 一、基本原理 SG滤波器通过在滑动窗口内拟合多项式来平滑数…...

Webserver(2.7)共享内存

目录 共享内存共享内存实现进程通信 共享内存 共享内存比内存映射效率更高&#xff0c;因为内存映射关联了一个文件 共享内存实现进程通信 write.c #include <stdio.h> #include <sys/ipc.h> #include <sys/shm.h> #include <string.h>int main(){…...

【网安案例学习】凭证填充Credential Stuffing

### 凭证填充的深入讨论 凭证填充&#xff08;Credential Stuffing&#xff09;是一种网络攻击技术&#xff0c;攻击者利用从数据泄露中获取的大量用户名和密码组合&#xff0c;尝试在其他网站和服务上进行自动化登录。这种攻击依赖于用户在多个网站上重复使用相同密码的习惯。…...

网站建设公司怎么选?网站制作公司怎么选才不会出错?

寻找适合靠谱的网站设计公司&#xff0c;不要盲目选广告推最多的几家&#xff0c;毕竟要实现自身品牌营销&#xff0c;还是需要多方面考量。以下几个方面可以作为选择的参考&#xff1a; 1. 专业能力如何&#xff1f; 一个公司的专业能力&#xff0c;决定了最后网站设计的成果…...

19. 架构重要需求

文章目录 第19章 架构重要需求19.1 从需求文档中收集架构重要需求&#xff08;ASRs&#xff09;不要抱太大希望从需求文档中找出架构重要需求 19.2 通过访谈利益相关者收集架构重要需求19.3 通过理解业务目标收集架构重要需求19.4 在效用树中捕获架构重要需求19.5 变化总会发生…...

iOS 再谈KVC、 KVO

故事背景&#xff1a;大厂面试&#xff0c;又问道了基本的kvc kvo的原理和使用&#xff0c;由于转了前端&#xff0c;除了个setter和getter&#xff0c;我全忘记了&#xff0c;其实还是没有理解记忆&#xff0c;下面再看一下kvc 和kvo ,总结一个让人通过理解而无法忘记的方法&a…...

java、excel表格合并、指定单元格查找、合并文件夹

#创作灵感# 公司需求 记录工作内容 后端&#xff1a;JAVA、Solon、easyExcel、FastJson2 前端&#xff1a;vue2.js、js、HTML 模式1&#xff1a;合并文件夹 * 现有很多文件夹 想合并全部全部的文件夹的文件到一个文件夹内 * 每个部门发布的表格 合并全部的表格为方便操作 模…...

最基础版编译运行Java(纯小白)

流程图&#xff1a; ⚠ 需要先安装JDK (Java Development Kit) 1. 写文件 首先写好自己的“文件”&#xff0c;可以用Sublime Text等文本编辑器写&#xff0c;还可以直接新建文本文档写一个.txt文件。 以编写一个HelloWorld程序为例&#xff1a; public class HelloWorld{p…...

六西格玛项目助力,手术机器人零部件国产化稳中求胜——张驰咨询

项目背景 XR-1000型腔镜手术机器人是某头部手术机器人企业推出的高端手术设备&#xff0c;专注于微创手术领域&#xff0c;具有高度的精确性和稳定性。而XR-1000型机器人使用的部分核心零部件长期依赖进口&#xff0c;特别是高精度电机、关节执行机构和视觉系统等&#xff0c;…...

Python爬虫系列(一)

目录 一、urllib 1.1 初体验 1.2 使用urllib下载网页、图片、视频等 1.3 反爬介绍 1.4 请求对象定制 1.5 get请求的quote方法 1.6 多个参数转成ascii编码 1.7 post请求 1.8 综合案例演示 一、urllib 1.1 初体验 # urllib是python默认带的&#xff0c;无需额外下载 i…...

# vim那些事...... vim删除文件全部内容

vim那些事… vim删除文件全部内容 1、在 Vim 中删除整个文件的内容&#xff0c;可以使用以下命令&#xff1a; 1&#xff09;打开 Vim&#xff0c;并编辑你想要清空的文件。 2&#xff09;按 Esc 确保你不在插入模式&#xff0c;而在命令模式。 3&#xff09;输入 gg 跳转到…...

Selinux及防火墙

一&#xff0c;selinux简介&#xff1a; SELinux&#xff08;Security-Enhanced Linux&#xff09;是一个Linux内核安全模块&#xff0c;旨在提供强制访问控制&#xff08;MAC&#xff09;机制&#xff0c;以增强系统的安全性。由美国国家安全局&#xff08;NSA&#xff09;开…...

业绩代码查询实战——php

一、一级代码显示职员 foreach($data_职员信息 as $key > $value){//$where_查询分类$where_查询通用;//$dat分类one $业绩提成->where($where_查询分类)->order("CreateDate desc")->select();if($value[haschildname]0 && $value[key] !"…...

内网穿透技术选型PPTP(点对点隧道协议)和 FRP(Fast Reverse Proxy)

PPTP&#xff08;点对点隧道协议&#xff09;和 FRP&#xff08;Fast Reverse Proxy&#xff09;是两种实现内网穿透的技术&#xff0c;但它们的工作原理、使用场景和特点有很大区别。以下是它们的详细比较&#xff1a; PPTP&#xff08;Point-to-Point Tunneling Protocol&am…...

信号与噪声分析——第三节:随机过程的统计特征

随机过程的定义&#xff1a; 随机过程是一种数学模型&#xff0c;用来描述系统或现象在时间或者空间上随之变化的不确定性。 一个随机过程的数字特征 1.数学期望&#xff08;统计平均值&#xff09;&#xff1a; 表示为 数学期望是随机过程在时间 t 上的平均值&#xff0c;通常…...

nginx(四):如何在 Nginx 中配置以保留真实 IP 地址

如何在 Nginx 中配置以保留真实 IP 地址 1、概述2、nginx配置示例2.1、配置说明2.2、客户端获取真实IP2.2.1、代码说明 3、插曲4、总结 大家好&#xff0c;我是欧阳方超&#xff0c;可以我的公众号“欧阳方超”&#xff0c;后续内容将在公众号首发。 1、概述 当使用nginx作为…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

DBLP数据库是什么?

DBLP&#xff08;Digital Bibliography & Library Project&#xff09;Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高&#xff0c;数据库文献更新速度很快&#xff0c;很好地反映了国际计算机科学学术研…...

6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙

Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...

goreplay

1.github地址 https://github.com/buger/goreplay 2.简单介绍 GoReplay 是一个开源的网络监控工具&#xff0c;可以记录用户的实时流量并将其用于镜像、负载测试、监控和详细分析。 3.出现背景 随着应用程序的增长&#xff0c;测试它所需的工作量也会呈指数级增长。GoRepl…...

Appium下载安装配置保姆教程(图文详解)

目录 一、Appium软件介绍 1.特点 2.工作原理 3.应用场景 二、环境准备 安装 Node.js 安装 Appium 安装 JDK 安装 Android SDK 安装Python及依赖包 三、安装教程 1.Node.js安装 1.1.下载Node 1.2.安装程序 1.3.配置npm仓储和缓存 1.4. 配置环境 1.5.测试Node.j…...