当前位置: 首页 > news >正文

yolov8模型推理测试代码(pt/onnx)

🦖yolov8训练出来的模型,不使用detect.py代码进行模型测试🦖

pt格式模型测试

import cv2
import os
from ultralytics import YOLO
# 定义输入和输出文件夹路径
input_folder = '/input/folder'  # 输入文件夹
output_folder = '/output/folder'  # 输出文件夹
# 确认输出文件夹存在
if not os.path.exists(output_folder):os.makedirs(output_folder)
# 加载YOLO模型
model = YOLO('yolov8.pt')
# 遍历输入文件夹中的所有文件
for filename in os.listdir(input_folder):# 仅处理图片文件,确保扩展名为 .jpg, .png 等if filename.endswith(('.jpg', '.png','.bmp')):# 加载图像image_path = os.path.join(input_folder, filename)image = cv2.imread(image_path)if image is None:print(f"图像加载失败: {image_path}")continue# 进行预测results = model(image,device='1')# 获取结果中的标注信息annotated_frame = results[0].plot()  # 将检测结果绘制在图像上# 保存结果图像到输出文件夹save_path = os.path.join(output_folder, f'result_{filename}')save_status = cv2.imwrite(save_path, annotated_frame)if save_status:print(f"检测结果保存到: {save_path}")else:print(f"保存图像失败: {save_path}")

onnx模型测试结果

import cv2
import os
import onnxruntime as ort
import numpy as np
# 定义输入和输出文件夹路径
input_folder = '/input/folder'  # 输入文件夹
output_folder = '/output/folder'  # 输出文件夹
# 确认输出文件夹存在
if not os.path.exists(output_folder):os.makedirs(output_folder)
# 加载 ONNX 模型
onnx_model_path = 'yolov8.onnx'
session = ort.InferenceSession(onnx_model_path, providers=['CUDAExecutionProvider'])
# 设置模型输入的尺寸
input_width, input_height = 640, 640  # 根据模型的输入尺寸
# 遍历输入文件夹中的所有文件
for filename in os.listdir(input_folder):# 仅处理图片文件,确保扩展名为 .jpg, .png 等if filename.endswith(('.jpg', '.png', '.bmp')):# 加载图像image_path = os.path.join(input_folder, filename)image = cv2.imread(image_path)if image is None:print(f"图像加载失败: {image_path}")continue# 调整图像大小并进行预处理input_image = cv2.resize(image, (input_width, input_height))input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)blob = np.expand_dims(input_image.astype(np.float32) / 255.0, axis=0).transpose(0, 3, 1, 2)# 设置输入input_name = session.get_inputs()[0].nameoutputs = session.run(None, {input_name: blob})# 解析预测结果并绘制检测框for detection in outputs[0][0]:  # 根据模型的输出格式解析score = float(detection[4])  # 假设第5个值是置信度if score > 0.5:  # 置信度阈值,取决于具体任务x_center, y_center, width, height = detection[:4]left = int((x_center - width / 2) * image.shape[1])top = int((y_center - height / 2) * image.shape[0])right = int((x_center + width / 2) * image.shape[1])bottom = int((y_center + height / 2) * image.shape[0])# 绘制检测框cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)label = f"{score:.2f}"cv2.putText(image, label, (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)# 保存结果图像到输出文件夹save_path = os.path.join(output_folder, f'result_{filename}')save_status = cv2.imwrite(save_path, image)if save_status:print(f"检测结果保存到: {save_path}")else:print(f"保存图像失败: {save_path}")

相关文章:

yolov8模型推理测试代码(pt/onnx)

🦖yolov8训练出来的模型,不使用detect.py代码进行模型测试🦖 pt格式模型测试 import cv2 import os from ultralytics import YOLO # 定义输入和输出文件夹路径 input_folder /input/folder # 输入文件夹 output_folder /output/folder …...

二叉树 最大深度(递归)

给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:3示例 2: 输入:root [1,null,2] 输出…...

C++详细笔记(五)

1.类和对象 1.1运算符重载(补) 1.运算符重载中,参数顺序和操作数顺序是一致的。 2.一般成员函数重载为成员函数,输入流和输出流重载为全局函数。 3.由1和2只正常的成员函数默认第一个参数为this指针而重载中参数顺序和操作数顺…...

简易CPU设计入门:译码模块(一)

项目代码下载 还是请大家首先准备好本项目所用的源代码。如果已经下载了,那就不用重复下载了。如果还没有下载,那么,请大家点击下方链接,来了解下载本项目的CPU源代码的方法。 下载本项目代码 准备好了项目源代码以后&#xff…...

力扣题目解析--三数之和

题目 给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足 nums[i] nums[j] nums[k] 0 。请你返回所有和为 0 且不重复的三元组。 注意:答案中不可以包含重复的三元组。 示…...

qt QTabWidget详解

1、概述 QTabWidget是Qt框架中的一个控件,它提供了一个标签页式的界面,允许用户在不同的页面(或称为标签)之间切换。每个页面都可以包含不同的内容,如文本、图像、按钮或其他小部件。QTabWidget非常适合用于创建具有多…...

linux shell脚本学习(1):shell脚本基本概念与操作

1.什么是shell脚本 linux系统中,shell脚本或称之为bash shell程序,通常是由vim编辑,由linux命令、bash shell指令、逻辑控制语句、注释信息组成的可执行文件 *linux中常以.sh后缀作为shell脚本的后缀。linux系统中文件乃至脚本的后缀并没有…...

Savitzky-Golay(SG)滤波器

Savitzky-Golay(SG)滤波器是一种在时域内基于局域多项式最小二乘法拟合的滤波方法,它最初由Savitzky A和Golay M于1964年提出,并广泛应用于数据流平滑除噪。 基本介绍 一、基本原理 SG滤波器通过在滑动窗口内拟合多项式来平滑数…...

Webserver(2.7)共享内存

目录 共享内存共享内存实现进程通信 共享内存 共享内存比内存映射效率更高&#xff0c;因为内存映射关联了一个文件 共享内存实现进程通信 write.c #include <stdio.h> #include <sys/ipc.h> #include <sys/shm.h> #include <string.h>int main(){…...

【网安案例学习】凭证填充Credential Stuffing

### 凭证填充的深入讨论 凭证填充&#xff08;Credential Stuffing&#xff09;是一种网络攻击技术&#xff0c;攻击者利用从数据泄露中获取的大量用户名和密码组合&#xff0c;尝试在其他网站和服务上进行自动化登录。这种攻击依赖于用户在多个网站上重复使用相同密码的习惯。…...

网站建设公司怎么选?网站制作公司怎么选才不会出错?

寻找适合靠谱的网站设计公司&#xff0c;不要盲目选广告推最多的几家&#xff0c;毕竟要实现自身品牌营销&#xff0c;还是需要多方面考量。以下几个方面可以作为选择的参考&#xff1a; 1. 专业能力如何&#xff1f; 一个公司的专业能力&#xff0c;决定了最后网站设计的成果…...

19. 架构重要需求

文章目录 第19章 架构重要需求19.1 从需求文档中收集架构重要需求&#xff08;ASRs&#xff09;不要抱太大希望从需求文档中找出架构重要需求 19.2 通过访谈利益相关者收集架构重要需求19.3 通过理解业务目标收集架构重要需求19.4 在效用树中捕获架构重要需求19.5 变化总会发生…...

iOS 再谈KVC、 KVO

故事背景&#xff1a;大厂面试&#xff0c;又问道了基本的kvc kvo的原理和使用&#xff0c;由于转了前端&#xff0c;除了个setter和getter&#xff0c;我全忘记了&#xff0c;其实还是没有理解记忆&#xff0c;下面再看一下kvc 和kvo ,总结一个让人通过理解而无法忘记的方法&a…...

java、excel表格合并、指定单元格查找、合并文件夹

#创作灵感# 公司需求 记录工作内容 后端&#xff1a;JAVA、Solon、easyExcel、FastJson2 前端&#xff1a;vue2.js、js、HTML 模式1&#xff1a;合并文件夹 * 现有很多文件夹 想合并全部全部的文件夹的文件到一个文件夹内 * 每个部门发布的表格 合并全部的表格为方便操作 模…...

最基础版编译运行Java(纯小白)

流程图&#xff1a; ⚠ 需要先安装JDK (Java Development Kit) 1. 写文件 首先写好自己的“文件”&#xff0c;可以用Sublime Text等文本编辑器写&#xff0c;还可以直接新建文本文档写一个.txt文件。 以编写一个HelloWorld程序为例&#xff1a; public class HelloWorld{p…...

六西格玛项目助力,手术机器人零部件国产化稳中求胜——张驰咨询

项目背景 XR-1000型腔镜手术机器人是某头部手术机器人企业推出的高端手术设备&#xff0c;专注于微创手术领域&#xff0c;具有高度的精确性和稳定性。而XR-1000型机器人使用的部分核心零部件长期依赖进口&#xff0c;特别是高精度电机、关节执行机构和视觉系统等&#xff0c;…...

Python爬虫系列(一)

目录 一、urllib 1.1 初体验 1.2 使用urllib下载网页、图片、视频等 1.3 反爬介绍 1.4 请求对象定制 1.5 get请求的quote方法 1.6 多个参数转成ascii编码 1.7 post请求 1.8 综合案例演示 一、urllib 1.1 初体验 # urllib是python默认带的&#xff0c;无需额外下载 i…...

# vim那些事...... vim删除文件全部内容

vim那些事… vim删除文件全部内容 1、在 Vim 中删除整个文件的内容&#xff0c;可以使用以下命令&#xff1a; 1&#xff09;打开 Vim&#xff0c;并编辑你想要清空的文件。 2&#xff09;按 Esc 确保你不在插入模式&#xff0c;而在命令模式。 3&#xff09;输入 gg 跳转到…...

Selinux及防火墙

一&#xff0c;selinux简介&#xff1a; SELinux&#xff08;Security-Enhanced Linux&#xff09;是一个Linux内核安全模块&#xff0c;旨在提供强制访问控制&#xff08;MAC&#xff09;机制&#xff0c;以增强系统的安全性。由美国国家安全局&#xff08;NSA&#xff09;开…...

业绩代码查询实战——php

一、一级代码显示职员 foreach($data_职员信息 as $key > $value){//$where_查询分类$where_查询通用;//$dat分类one $业绩提成->where($where_查询分类)->order("CreateDate desc")->select();if($value[haschildname]0 && $value[key] !"…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...