【大数据学习 | kafka】kafka的偏移量管理
1. 偏移量的概念
消费者在消费数据的时候需要将消费的记录存储到一个位置,防止因为消费者程序宕机而引起断点消费数据丢失问题,下一次可以按照相应的位置从kafka中找寻数据,这个消费位置记录称之为偏移量offset。
kafka0.9以前版本将偏移量信息记录到zookeeper中
新版本中偏移量信息记录在__consumer_offsets中,这个topic是系统生成的,不仅仅帮助管理偏移量信息还能分配consumer给哪个coordinator管理,是一个非常重要的topic
它的记录方式和我们知道的记录方式一样 groupid + topic + partition ==> offset
其中存储到__consumer_offsets中的数据格式也是按照k-v进行存储的,其中k是groupid + topic + partition
value值为offset的偏移量信息。
[hexuan@hadoop106 ~]$ kafka-topics.sh --bootstrap-server hadoop106:9092 --list
__consumer_offsets
topic_a
topic_b
topic_c
topic_e
topic_f
topic_g
可以看到系统生成的topic
因为之前我们消费过很多数据,现在可以查看一下记录在这个topic中的偏移量信息
其中存在一个kafka-consumer-groups.sh 命令
# 查看消费者组信息
kafka-consumer-groups.sh --bootstrap-server hadoop106:9092 --list
# 查询具体信息
kafka-consumer-groups.sh --bootstrap-server hadoop106:9092 --describe --group my-group
# 查看活跃信息
kafka-consumer-groups.sh --bootstrap-server hadoop106:9092 --describe --group my-group --members
查看消费者组信息:
[hexuan@hadoop106 ~]$ kafka-consumer-groups.sh --bootstrap-server hadoop106:9092 --list
hainiu_group
hainiu_group2
当前使用组信息:
[hexuan@hadoop106 ~]$ kafka-consumer-groups.sh --bootstrap-server hadoop106:9092 --describe --group hainiu_groupGROUP TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG CONSUMER-ID HOST CLIENT-ID
hainiu_group topic_c 0 0 0 0 consumer-hainiu_group-1-41a9ebd6-99a3-4d83-b1d7-88a2a9295054 /192.168.154.1 consumer-hainiu_group-1
hainiu_group topic_b 1 1438 1438 0 - - -
hainiu_group topic_b 0 1440 1440 0 - - -
hainiu_group topic_b 3 1417 1417 0 - - -
hainiu_group topic_b 4 1473 1473 0 - - -
hainiu_group topic_b 5 1440 1440 0 - - -
hainiu_group topic_b 2 1407 1407 0 - - -
hainiu_group topic_b 6 1391 1391 0 -
当前组消费偏移量信息:
GROUP:组名
TOPIC:topic信息
PARTITION:分区
CURRENT-OFFSET:当前消费偏移量
LOG-END-OFFSET:这个分区总共存在多少数据
LAG:还差多少没消费
CONSUMER-ID:随机消费者id
HOST:主机名
CLIENT-ID:客户端id
同时我们也可以查询__consumer_offset中的原生数据:
kafka-console-consumer.sh --bootstrap-server hadoop106:9092 \
--topic __consumer_offsets --from-beginning --formatter \
kafka.coordinator.group.GroupMetadataManager\$OffsetsMessageFormatter
使用元数据格式化方式查看偏移量信息数据
key展示的是groupid,topic,partition , value值展示的是当前的偏移量信息
并且在这个topic中是追加形式一致往里面写入的
2. 偏移量的自动管理
那么我们已经看到了偏移量的存储但是偏移量究竟是怎么提交的呢?
首先我们没有设置任何的偏移量提交的代码,这个是默认开启的,其中存在两个参数
pro.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, true);
//开启自动提交偏移量信息
pro.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, 5000);
//默认提交间隔5s
官网的设置参数为两个true和5000。
所以我们在没有开启默认提交的时候已经自动提交了
为了演示自动提交的效果我们引入一个参数
auto.offset.reset
这个参数用于控制没有偏移量存储的时候,应该从什么位置进行消费数据
(因为偏移量自动提交默认是5秒一次,如果数据在5秒内消费完毕,则会造成偏移量并没有存储的情况)
其中参数值官网中给出三个
[latest, earliest, none]latest:从最新位置消费earliest:最早位置消费数据none:如果不指定消费的偏移量直接报错
一定要记得一点,如果有偏移量信息那么以上的设置是无效的.
官方文档显示给出的该参数的默认值为lastest,即从最新位置开始消费。
现在我们设置读取位置为最早位置,并且消费数据,看看可不可以记录偏移量,断点续传
思路:
首先修改组id为一个新的组,然后从最早位置消费数据,如果记录了偏移量,那么重新启动消费者会看到,没有任何数据,因为之前记录了消费数据的位置
整体代码如下:
package com.hainiu.kafka;import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.*;public class Consumer1 {public static void main(String[] args) {Properties pro = new Properties();pro.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"nn1:9092");pro.put(ConsumerConfig.GROUP_ID_CONFIG,"new_group");pro.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());pro.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());pro.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, true);pro.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");pro.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, 5000);KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(pro);List<String> topics = Arrays.asList("topic_d","topic_e");consumer.subscribe(topics);while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));Iterator<ConsumerRecord<String, String>> it = records.iterator();while(it.hasNext()){ConsumerRecord<String, String> record = it.next();System.out.println(record.topic()+"->"+record.partition()+"->"+ record.offset()+"->"+record.key()+"->"+record.value());}}}
}
运行完毕打印数据
这个时候我们需要在5s之内关闭应用,然后重新启动,因为提交的间隔时间是5s
再次启动
我们发现数据依旧被消费出来了,证明之前的偏移量存储没有任何效果和作用,因为间隔时间是5s
现在我们等待5s后在关闭应用
发现没有任何数据产生,因为偏移量已经提交了
3. 偏移量的手动提交
如上的案例我们发现偏移量的管理如果交给系统自己管理,我们没有办法及时的修改和管理偏移量信息,这个时候我们需要手动来提交给管理偏移量,更加及时和方便
这个时候引入两个方法
consumer.commitAsync();
consumer.commitSync();
commitAsync 异步提交方式:只提交一次,不管成功与否不会重试
commitSync 同步提交方式:同步提交方式会一直提交到成功为止
一般我们都会选择异步提交方式,他们的功能都是将拉取到的一整批数据的最大偏移量直接提交到__consumer_offsets中,但是同步方式会很浪费资源,异步方式虽然不能保证稳定性但是我们的偏移量是一直递增存储的,所以偶尔提交不成功一个两个不影响我们的使用
pro.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false);
//设定自动提交为false
consumer.commitSync();
consumer.commitAsync();
//设定提交方式为手动提交
整体代码如下:
package com.hainiu.kafka.consumer;/*** ClassName : consumer_offsets* Package : com.hainiu.kafka.consumer* Description** @Author HeXua* @Create 2024/11/5 21:30* Version 1.0*/import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.*;public class Consumer_CommitSync {public static void main(String[] args) {Properties pro = new Properties();pro.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop106:9092");pro.put(ConsumerConfig.GROUP_ID_CONFIG,"hainiu_group2");pro.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());pro.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());pro.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false);pro.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
// pro.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, 5000);KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(pro);List<String> topics = Arrays.asList("topic_h");consumer.subscribe(topics);while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));Iterator<ConsumerRecord<String, String>> it = records.iterator();while(it.hasNext()){ConsumerRecord<String, String> record = it.next();System.out.println(record.topic()+"->"+record.partition()+"->"+ record.offset()+"->"+record.key()+"->"+record.value());}consumer.commitAsync();
// consumer.commitSync();}}
}
现在先在topic中输入部分数据
然后启动消费者,当存在数据打印的时候马上关闭掉应用,在此启动会发现数据不会重新消费
topic_h->5->12->null->1
topic_h->5->13->null->2
topic_h->5->14->null->3
topic_h->5->15->null->4
topic_h->5->16->null->5
topic_h->5->17->null->6
偏移量已经提交不会重复消费数据
4. 断点消费数据
在没有偏移量的时候我们可以设定
auto.offset.reset进行数据的消费
可选参数有 latest earliest none等位置
但是如果存在偏移量以上的设定就不在好用了,我们需要根据偏移量的位置进行断点消费数据
但是有的时候我们需要指定位置消费相应的数据
这个时候我们需要使用到
consumer.seek();
//可以指定位置进行数据的检索
但是我们不能随意的指定消费者消费数据的位置,因为在启动消费者的时候,一个组中会存在多个消费者,每个人拿到的对应分区是不同的,所以我们需要知道这个消费者能够获取的分区是哪个,然后再指定相应的断点位置
这里我们就需要监控分区的方法展示出来所有订阅的分区信息
consumer.subscribe(topics, new ConsumerRebalanceListener() {@Overridepublic void onPartitionsRevoked(Collection<TopicPartition> partitions) {}@Overridepublic void onPartitionsAssigned(Collection<TopicPartition> partitions) {}});
为了演示效果我们使用生产者在topic_d中增加多个消息
package com.hainiu.kafka.consumer;/*** ClassName : Producer2* Package : com.hainiu.kafka.consumer* Description** @Author HeXua* @Create 2024/11/5 23:01* Version 1.0*/
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;import java.util.Properties;public class Producer2 {public static void main(String[] args) {Properties pro = new Properties();pro.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop106:9092");pro.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());pro.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());KafkaProducer<String, String> producer = new KafkaProducer<String, String>(pro);for (int i = 0; i < 1000; i++) {ProducerRecord<String, String> record = new ProducerRecord<String, String>("topic_d", "" + i, "message"+i);producer.send(record);}producer.close();}
}
随机发送数据到不同的节点,使用随机key
然后使用断点消费数据
不设置任何的偏移量提交操作和断点位置
package com.hainiu.kafka.consumer;/*** ClassName : ConsumerWithUDOffset* Package : com.hainiu.kafka.consumer* Description** @Author HeXua* @Create 2024/11/5 23:03* Version 1.0*/
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.*;public class ConsumerWithUDOffset {public static void main(String[] args) {Properties pro = new Properties();pro.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop106:9092");pro.put(ConsumerConfig.GROUP_ID_CONFIG,"new1");pro.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());pro.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());pro.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"earliest");pro.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG,6000);pro.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,false);KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(pro);List<String> topics = Arrays.asList("topic_h");// range roundRobin sticky cooperativeStickyconsumer.subscribe(topics, new ConsumerRebalanceListener() {@Overridepublic void onPartitionsRevoked(Collection<TopicPartition> collection) {}@Overridepublic void onPartitionsAssigned(Collection<TopicPartition> collection) {for (TopicPartition topicPartition : collection) {consumer.seek(topicPartition,195);}}});while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));Iterator<ConsumerRecord<String, String>> it = records.iterator();while(it.hasNext()){ConsumerRecord<String, String> record = it.next();System.out.println(record.topic()+"->"+record.partition()+"->"+ record.offset()+"->"+record.key()+"->"+record.value());}consumer.commitAsync();}}
}
5. 时间断点
kafka没有给大家提供直接根据时间找到断点位置的方法,我们需要根据时间找到偏移量,然后根据偏移量进行数据消费
consumer.offsetsForTimes();
//通过这个方法找到对应时间的偏移量位置
consumer.seek();
//然后在通过这个方法根据断点进行消费数据
整体代码如下
package com.hainiu.kafka;import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.*;public class Consumer1 {public static void main(String[] args) {Properties pro = new Properties();pro.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"nn1:9092");pro.put(ConsumerConfig.GROUP_ID_CONFIG,"new_group221");pro.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());pro.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());pro.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,false);KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(pro);List<String> topics = Arrays.asList("topic_e");consumer.subscribe(topics, new ConsumerRebalanceListener() {@Overridepublic void onPartitionsRevoked(Collection<TopicPartition> partitions) {// no op}@Overridepublic void onPartitionsAssigned(Collection<TopicPartition> partitions) {HashMap<TopicPartition, Long> map = new HashMap<>();for (TopicPartition partition : partitions) {map.put(partition,1675076400000L);//将时间和分区绑定在一起,然后合并在一起放入到检索方法中}Map<TopicPartition, OffsetAndTimestamp> offsets = consumer.offsetsForTimes(map);//根据时间获取时间对应的偏移量位置for (Map.Entry<TopicPartition, OffsetAndTimestamp> en : offsets.entrySet()) {System.out.println(en.getKey()+"-->"+en.getValue());if(en.getValue() != null){consumer.seek(en.getKey(),en.getValue().offset());//获取每个分区的偏移量的位置,使用seek进行找寻数据}}}});while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));Iterator<ConsumerRecord<String, String>> it = records.iterator();while(it.hasNext()){ConsumerRecord<String, String> record = it.next();System.out.println(record.topic()+"->"+record.partition()+"->"+ record.offset()+"->"+record.key()+"->"+record.value());}
// consumer.commitAsync();}}
}
相关文章:

【大数据学习 | kafka】kafka的偏移量管理
1. 偏移量的概念 消费者在消费数据的时候需要将消费的记录存储到一个位置,防止因为消费者程序宕机而引起断点消费数据丢失问题,下一次可以按照相应的位置从kafka中找寻数据,这个消费位置记录称之为偏移量offset。 kafka0.9以前版本将偏移量信…...

实景三维赋能森林防灭火指挥调度智慧化
森林防灭火工作是保护森林资源和生态环境的重要任务。随着信息技术的发展,实景三维技术在森林防灭火指挥调度中的应用日益广泛,为提升防灭火工作的效率和效果提供了有力支持。 一、森林防灭火面临的挑战 森林火灾具有突发性强、破坏性大、蔓延速度快、…...

【C++课程学习】:string的模拟实现
🎁个人主页:我们的五年 🔍系列专栏:C课程学习 🎉欢迎大家点赞👍评论📝收藏⭐文章 目录 一.string的主体框架: 二.string的分析: 🍔构造函数和析构函数&a…...

Linux(VMware + CentOS )设置固定ip
需求:设置ip为 192.168.88.130 先关闭虚拟机 启动虚拟机 查看当前自动获取的ip 使用 FinalShell 通过 ssh 服务远程登录系统,更换到 root 用户 修改ip配置文件 vim /etc/sysconfig/network-scripts/ifcfg-ens33 重启网卡 systemctl restart network …...

安卓 android studio各版本下载地址(官方)
https://developer.android.google.cn/studio/archive 别用中文,右上角的语言切换成英文...

如何在一个 Docker 容器中运行多个进程 ?
在容器化的世界里,Docker 彻底改变了开发人员构建、发布和运行应用程序的方式。Docker 容器封装了运行应用程序所需的所有依赖项,使其易于跨不同环境一致地部署。然而,在单个 Docker 容器中管理多个进程可能具有挑战性,这就是 Sup…...

poetry 配置多个cuda环境心得
操作系统:ubuntu22.04 LTS python版本:3.12.7 最近学习了用poetry配置python虚拟环境,当为不同的项目配置cuda时,会遇到不同的项目使用的cuda版本不一致的情况。 像torch 这样的库,它们会对cuda-toolkit有依赖&…...

网络编程入门
目录 1.网络编程入门 1.1 网络编程概述【理解】 1.2 网络编程三要素【理解】 1.3 IP地址【理解】 1.4InetAddress【应用】 1.5端口和协议【理解】 2.UDP通信程序 2.1 UDP发送数据【应用】 2.2UDP接收数据【应用】 2.3UDP通信程序练习【应用】 3.TCP通信程序 3.1TCP…...

Linux-socket详解
Linux-socket详解_socket linux-CSDN博客...

SQL Server 2022安装要求(硬件、软件、操作系统等)
SQL Server 2022安装要求 1、硬件要求2、软件要求3、操作系统支持4、Server Core 支持5、跨语言支持6、磁盘空间要求 1、硬件要求 以下内存和处理器要求适用于所有版本的 SQL Server: 组件要求存储SQL Server 要求最少 6 GB 的可用硬盘驱动器空间。 磁盘空间要求随…...

“众店模式”:创新驱动下的商业新生态
在数字化浪潮的推动下,传统商业模式正经历着前所未有的转型。“众店模式”作为一种新兴的商业模式,以其独特的商业逻辑和创新的玩法,为商家和消费者构建了一个共赢的商业新生态。 一、“众店模式”的核心构成 “众店模式”的成功࿰…...

54. 螺旋矩阵
https://leetcode.cn/problems/spiral-matrix/description/?envTypestudy-plan-v2&envIdtop-100-liked观察示例中的输出轨迹我们可以想到如下设计: 1.在朝某一方向行进到头后的改变方向是确定的,左->下,下->右,右->…...

剧本杀小程序,市场发展下的新机遇
剧本杀作为休闲娱乐的一种游戏方式,在短时间内进入了大众视野中,受到了广泛关注。近几年,剧本杀行业面临着创新挑战,商家需求寻求新的发展机遇,在市场饱和度下降的趋势下,获得市场份额。 随着科技的不断进…...

【系统架构设计师】论文:论基于 ABSD 的软件开发
更多内容请见: 备考系统架构设计师-专栏介绍和目录 文章目录 摘要正文摘要 2022年5月,我就职的公司承接了xx的智慧党建工作,建设“党建红云” 系统,为xx公司的党组织提供觉务管理、服务功能,促进党员学习和党组织交流。我在该项目中承担架构设计师的职责,主导需求分析和…...

为什么OLED透明屏在同类产品中显示效果最好
说起OLED透明屏,这家伙在同类产品里那真的是“一枝独秀”啊!为啥这么说呢?且听我细细道来。 首先,OLED透明屏的透明度那是杠杠的!它不像传统显示屏那样有个固定的背景,而是可以实现像素级的透明效果。这样一…...

深度学习基础知识-Batch Normalization(BN)超详细解析
一、背景和问题定义 在深层神经网络(Deep Neural Networks, DNNs)中,层与层之间的输入分布会随着参数更新不断发生变化,这种现象被称为内部协变量偏移(Internal Covariate Shift)。具体来说,由…...

基于单片机的燃气报警阀门系统
本设计基于单片机的燃气报警阀门系统,燃气报警阀门系统采用STM32主控制器为核心芯片,外围电路由燃气传感器、OLED液晶显示模块、按键模块、蜂鸣器报警模块、电磁阀以及SIM800模块等模块组成。燃气传感器模块负责采集燃气浓度数据,采集完成由S…...

watch与computed的区别、运用的场景
computed和watch都是响应式数据变化的重要机制,但它们在功能、使用场景和性能表现上有显著的区别。 主要区别 功能和用途 1、computed:计算属性,用于基于其他数据属性进行计算,并返回一个结果。它具有缓存机制,只有当…...

【ESP32+MicroPython】开发环境部署
本教程将指导你如何在Visual Studio Code(VSCode)中设置ESP32的MicroPython开发环境。我们将涵盖从安装Python到烧录MicroPython固件的整个过程,以及如何配置VSCode以便与ESP32进行交互。 准备工作 安装Python 确保你的计算机上安装了Pyth…...

Vision - 开源视觉分割算法框架 Grounded SAM2 配置与推理 教程 (1)
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/143388189 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 Ground…...

DAY21|二叉树Part08|LeetCode: 669. 修剪二叉搜索树、108.将有序数组转换为二叉搜索树、538.把二叉搜索树转换为累加树
目录 LeetCode: 669. 修剪二叉搜索树 基本思路 C代码 LeetCode: 108.将有序数组转换为二叉搜索树 基本思路 C代码 LeetCode: 538.把二叉搜索树转换为累加树 基本思路 C代码 LeetCode: 669. 修剪二叉搜索树 力扣代码链接 文字讲解:LeetCode: 669. 修剪二叉搜…...

在gitlab,把新分支替换成master分支
1、备份master分支,可以打tag 2、删除master分支 正常情况下,master分支不允许删除,需要做两个操作才能删除 a、变更项目默认分支为非master分支,可以先随便选择 b、取消master为非保护分支 操作了上述两步,就可以删…...

使用 Spring Boot 集成 Thymeleaf 和 Flying Saucer 实现 PDF 导出
在 Spring Boot 项目中,生成 PDF 报表或发票是常见需求。本文将介绍如何使用 Spring Boot 集成 Thymeleaf 模板引擎和 Flying Saucer 实现 PDF 导出,并提供详细的代码实现和常见问题解决方案。 目录 一、项目依赖二、创建 Thymeleaf 模板三、创建 PDF 生…...

web——upload1——攻防世界
第一次做木马题目,有点懵逼,浮现一下做题思路 可以上传一个文件,通过学习学习到了一句话木马 一句话木马: 利用文件上传漏洞,往目标网站中上传一句话木马,然后你就可以在本地通过中国菜刀chopper.exe即可…...

nginx 搭建网站
1.查看防火墙状态systemctl status firewalld 2.getenforce 3.安装nginx yum install nginx -y 4.网站信息 echo "welcome to yinchuankejixuanyuan" > /usr/share/nginx/html/index.html 5.查看命令状态 nginx -t 6.重启 systemctl restart nginx...

Java基础-Java中的常用类(上)
(创作不易,感谢有你,你的支持,就是我前行的最大动力,如果看完对你有帮助,请留下您的足迹) 目录 String类 创建字符串 字符串长度 连接字符串 创建格式化字符串 String 方法 System类 常用方法 方…...

气压仪器智能打气泵方案芯片SIC8833
智能打气泵方案最开始是机械式的开发,后来慢慢地演变成由一个气缸、压力传感器和主控芯片的开发的PCBA方案,它具备小体积、智能数显、预设胎压、动态测量、精准压力检测以及过充过放等功能。 其方案设计原理是利用主控芯片和压力传感器的组合设计&#x…...

软件测试(系统测试)的定位和专业:完善产品;专业;非助手;自动化
软件测试(系统测试)的定位 在研发流程的后端,测试并非无中生有的创举,而是从既有基础(即“1”)出发,致力于推动产品向更高层次(即从“1”到“100”)的跃升与完善。在这一…...

2024 CSS保姆级教程四
CSS中的动画 CSS动画(CSS Animations)是为层叠样式表建议的允许可扩展标记语言(XML)元素使用CSS的动画的模块 即指元素从一种样式逐渐过渡为另一种样式的过程 常见的动画效果有很多,如平移、旋转、缩放等等&#…...

PostgreSQL技术内幕17:PG分区表
文章目录 0.简介1.概念介绍2.分区表技术产生的背景3.分区类型及使用方式4.实现原理4.1 分区表创建4.2 分区表查询4.3 分区表写入4.4 分区表删除 0.简介 本文主要介绍PG中分区表的概念,产生分区表技术的原因,使用方式和其内部实现原理,旨在能…...