当前位置: 首页 > news >正文

【数据处理】数据预处理·数据变换(熵与决策树)

🌈 个人主页:十二月的猫-CSDN博客
🔥 系列专栏: 🏀软件开发必备知识_十二月的猫的博客-CSDN博客

💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光

 

目录

1. 前言

2. 数据变换 

2.1 数据规范化

​编辑 2.2 数据离散化

2.2.1 非监督离散化

2.2.2 监督离散化


1. 前言

在进入这一篇文章之前,我希望大家看看另外两篇文章

【数据处理】数据预处理·数据清理-CSDN博客

【数据处理】数据预处理·数据集成-CSDN博客

核心思想:

        1、大数据中最重要的部分就是数据处理

        2、数据处理中第一步就是数据预处理

        3、数据预处理目的是提高数据的质量,使得我们能使用更高质量的数据进行后续处理

        4、数据预处理包括:数据清洗、数据集成、数据变换、数据规约

数据清洗:

        1、缺失值处理

        2、噪声处理

数据集成:

        1、数据集成中最大的问题就是数据冗余

        2、冗余数据包括:冗余样本、冗余属性

        3、数据冗余中最重要的部分是:冗余检测

        4、冗余检测包括:有序数据检测、无序数据检测

        5、检测方式有两个角度:a. 将数据看成向量空间的点;b. 将数据看成向量


接下来,我们进入数据预处理的下一部分:数据变换

2. 数据变换 

定义:由于数据量之间的量纲、连续性等不同导致不同数据之间不能比较,因此需要通过数据变换使他们具有可比性。

数据变换包括 :数据规范化、数据离散化

2.1 数据规范化

目的:将不同数据(属性)按一定规则进行缩放,使它们具有可比性

举个例子:体重和身高两个数据量之间不能比较,因为量纲不同,因此需要规范化 

最小-最大规范化:(对原始数据进行线性变换。把数据A的观察值v从原始的 区间[minA,maxA]映 射到新区间 [new_minA,new_maxA])【0-1规范化又称为归一化】

0-1规范化:

\mathrm{x'=\frac{x-min}{max-min}}

[minA,maxA] - [new_minA,new_maxA]规范化:

\frac{v^\prime-new_min_A}{new_max_A-new_min_A}=\frac{v-min_A}{max_A-min_A}

\nu^{\prime}=\frac{\nu-min_{A}}{\max_{A}-\min_{A}}(\mathrm{new_max_{A}-new_min_{A}})+\min_{A} 

用处:能够调节两个属性的量纲,让两者可以比较 

缺点:噪声影响非常大,对离群值很敏感

因此,提出z-score规范化!!!!

z-score规范化:

小数定标规范化: 

 2.2 数据离散化

连续数据过于细致,数据之间的关系难以分析,划分为离散化的区间,发现数据之间的关联,便于算法处理。

  • 思考什么是离散化?
  • 离散化本质就是限制类的数量
  • 限制类的数量其核心思想和平滑是相同的
  • 平滑也就是我们进行数据清洗(缺失、噪声处理)的核心思想

2.2.1 非监督离散化

  • 分箱
  • 聚类

 

2.2.2 监督离散化

  • 熵的计算

熵的本质思想:信息不确定性越大,价值越大

例如:

1、“太阳从东边升起来”这个信息没有不确定性,这是一个必然事实。那么这个信息对于我们来说是没有价值的。

2、“特朗普将赢得大选”这个信息不确定性相当大(特朗普不一定赢)。因此,我们听到这个信息会很好奇,为什么特朗普将赢,因此这个信息价值很大。


那么如何利用熵来对数据进行离散化呢?

离散化:就是把数据的类别减少(限制类别数量)。

因此,利用熵来实现离散化的关键在于:为连续的数据进行有限的分类。

问题的关键就转化为:如何利用熵有效的对数据进行分类

分类方法:

  • D:待分类数据集
  • a:数据集的特征属性
  • V:数据集特征属性a的不同分类集合(V是我们找max过程中需要改变的

举个例子:

如果想要学习更多深度学习知识,大家可以点个关注并订阅,持续学习、天天进步

你的点赞就是我更新的动力,如果觉得对你有帮助,辛苦友友点个赞,收个藏呀~~~

相关文章:

【数据处理】数据预处理·数据变换(熵与决策树)

🌈 个人主页:十二月的猫-CSDN博客 🔥 系列专栏: 🏀软件开发必备知识_十二月的猫的博客-CSDN博客 💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 目录 1. 前…...

UE5 随机生成地牢关卡

参考视频:【UE5 | 教程 | 地编】虚幻引擎5 中创建史诗级 程序化 地下城_哔哩哔哩_bilibili 首先创建一个父项Actor 这个BOX碰撞提是和地板重叠的 这三个是场景组件,这个ExitsFolder下面的箭头等会会在子蓝图中添加 接下来创建BP_MasterRoom的子蓝图&…...

【Cpp】命名空间

前言 在C语言中,命名冲突通常发生在不同的作用域中使用了相同的标识符: 全局变量和局部变量同名: 如果在全局作用域和局部作用域中都定义了同名的变量,那么在局部作用域中,全局变量会被局部变量遮蔽。 int globalVar; // 全局变量…...

ESP32学习笔记——LOG日志库的使用

注:本文由CHATGPT辅助创作,未经验证,实际工程使用请仔细甄别。 对于设置日志级别的几种方式(esp_log_level_set、CONFIG_LOG_DEFAULT_LEVEL、CONFIG_LOG_MAXIMUM_LEVEL、LOG_LOCAL_LEVEL )容易混淆,特此学习…...

51c~C语言~合集1

我自己的原文哦~ https://blog.51cto.com/whaosoft/12428240 一、C语言和C的区别 ​ C语言虽说经常和C在一起被大家提起,但可千万不要以为它们是一个东西。现在我们常用的C语言是C89标准,C是C99标准的。C89就是在1989年制定的标准,如今最新…...

$nextTick 实现原理

Vue 使用 nextTick 来确保数据更新后的 DOM 操作在更新完成后执行。其核心逻辑是将回调放到微任务或宏任务队列中,确保回调在 DOM 更新完成后执行。 Vue.js 会利用不同的浏览器 API 来模拟 nextTick 的延迟执行,通常是通过: Promise&#x…...

kelp protocol

道阻且长,行而不辍,未来可期 有很长一段时间我都在互联网到处拾金,but,东拼西凑的,总感觉不踏实,最近在老老实实的看官方文档 & 阅读白皮书 &看合约,挑拣一些重要的部分配上官方的证据,和过路公主or王子分享一下,愿我们早日追赶上公司里那些可望不可及大佬们。…...

Golang--面向对象

Golang语言面向对象编程说明: Golang也支持面向对象编程(OOP),但是和传统的面向对象编程有区别,并不是纯粹的面向对象语言。所以我们说Golang支持面向对象编程特性是比较准确的。Golang没有类(class),Go语言的结构体(struct)和其…...

深度学习经典模型之LeNet-5

1 LeNet-5 1.1 模型介绍 ​ LeNet-5是由 L e C u n LeCun LeCun 提出的一种用于识别手写数字和机器印刷字符的卷积神经网络(Convolutional Neural Network,CNN) [ 1 ] ^{[1]} [1],其命名来源于作者 L e C u n LeCun LeCun的名字…...

Abaqus随机骨料过渡区孔隙三维网格插件:Random Agg ITZ Pore 3D (Mesh)

插件介绍 Random Agg ITZ Pore 3D (Mesh) V1.0 - AbyssFish 插件可在Abaqus内参数化建立包含水泥浆基体、粗细骨料、界面过渡区(ITZ)、孔隙在内的多相材料混凝土细观背景网格模型。 模型说明 插件采用材料映射单元的方式,将不同相材料赋值…...

PG数据库 jsonb字段 模糊查询

背景: 项目由于多语言的设计,将字段设置成json字段类型,同时存储中文和英文 页面上通过输入框实现模糊的查询 一、表结构:name字段设置jsonb类型 二、表数据 3、Mybatis编写sql select pp.name ->>zh-CN as pmsProductNam…...

javascript-Web APLs (四)

日期对象 用来表示时间的对象 作用:可以得到当前系统时间 在代码中发现了 new 关键字时,一般将这个操作称为 实例化 //创建一个时间对象并获取时间 //获得当前时间 const date new Date() //获得指定时间 const date new Date(2006-6-6) console.log(…...

Keras 3 示例:开启深度学习之旅

Keras 3 示例:开启深度学习之旅 一、Keras 3 简介 Keras 3是一个强大的深度学习框架,它为开发者提供了简洁、高效的方式来构建和训练神经网络。它在之前版本的基础上进行了改进和优化,具有更好的性能、兼容性和功能扩展性。无论是初学者还是…...

鸿蒙Next如何接入微信支付

大家好,这是我工作中接触到的鸿蒙Next接入微信支付,有使用到,分享给大家,轻松便捷 前提:你已有鸿蒙版本的微信,并且微信余额或绑定银行卡有钱,因为内测的微信暂不支持收红包和转账,2.你的应用已…...

nginx(五):关于location匹配规则那些事

关于location匹配规则那些事 1 概述2 语法3 匹配规则说明3.1 精确匹配3.2 前缀匹配(^~)3.3 正则表达式匹配(\~和\~*)3.4 普通前缀匹配 4 匹配优先级5 注意事项6 总结 大家好,我是欧阳方超,可以我的公众号“…...

【论文阅读】Associative Alignment for Few-shot Image Classification

用于小样本图像分类的关联对齐 引用:Afrasiyabi A, Lalonde J F, Gagn C. Associative alignment for few-shot image classification[C]//Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16. Spri…...

acmessl.cn提供接口API方式申请免费ssl证书

目录 一、前沿 二、API接口文档 1、证书可申请列表 简要描述 请求URL 请求方式 返回参数说明 备注 2、证书申请 简要描述 请求URL 请求方式 业务参数 返回示例 返回参数说明 备注 3、证书查询 简要描述 请求URL 请求方式 业务参数 返回参数说明 备注 4、证…...

DBeaver如何快速格式化sql语句,真简单!

前言 我之前在使用DBeaver的时候,一直不知道其可以格式化sql语句,导致sql语句看起来比较杂乱,今天就来介绍下DBeaver如何格式化sql语句。 如何格式化sql语句 首先,我们打开一个sql窗口,在里面输入我们要查询的sql语…...

OpenCV C++ 计算两幅图像之间的多尺度结构相似性(MSSIM)

目录 一、定义与背景 二、计算流程 三、性质与特点 四、应用场景 五、代码实现 多尺度结构相似性(MSSIM)是一种用于衡量两幅图像之间相似度的指标,它基于结构相似性(SSIM)指数进行扩展,通过在不同尺度上计算SSIM来评估图像的整体质量。以下是对MSSIM的详细介…...

代码随想录第二十二天

回溯算法理论介绍 回溯算法是一种基于递归思想的算法设计技术,适用于解决需要构造所有解或找到特定解的组合问题。回溯的基本思路是通过系统地搜索所有可能的解决方案,然后逐步撤销不符合要求的选择,回到上一步继续尝试。这种算法最适合应用…...

【k8s】ClusterIP能http访问,但是不能ping 的原因

ClusterIP 服务在 Kubernetes 中是可以访问的,但通常无法通过 ping 命令来测试连通性。这主要是因为 ClusterIP 是一个虚拟 IP 地址,而不是实际分配给某个网络接口的 IP 地址。以下是一些原因和解释: 1. 虚拟 IP 地址 ClusterIP 是一个虚拟…...

【力扣打卡系列】单调栈

坚持按题型打卡&刷&梳理力扣算法题系列,语言为go,Day20 单调栈 题目描述 解题思路 单调栈 后进先出 记录的数据加在最上面丢掉数据也先从最上面开始 单调性 记录t[i]之前会先把所有小于等于t[i]的数据丢掉,不可能出现上面大下面小的…...

使用docker安装zlmediakit服务(zlm)

zlmediakit安装 zlmediakit安装需要依赖环境和系统配置,所以采用docker的方式来安装不容易出错。 docker pull拉取镜像(最新) docker pull zlmediakit/zlmediakit:master然后先运行起来 sudo docker run -d -p 1935:1935 -p 80:80 -p 8554:554 -p 10000:10000 -p …...

SOLID原则-单一职责原则

转载请注明出处:https://blog.csdn.net/dmk877/article/details/143447010 作为一名资深程序员越来越感觉到基础知识的重要性,比如设计原则、设计模式、算法等,这些知识的长期积累会让你突破瓶颈实现质的飞跃。鉴于此我决定写一系列与此相关的博客&…...

Transformer究竟是什么?预训练又指什么?BERT

目录 Transformer究竟是什么? 预训练又指什么? BERT的影响力 Transformer究竟是什么? Transformer是一种基于自注意力机制(Self-Attention Mechanism)的神经网络架构,它最初是为解决机器翻译等序列到序列(Seq2Seq)任务而设计的。与传统的循环神经网络(RNN)或卷…...

Jdbc批处理功能和MybatisPlus

文章目录 1. 序言2. JDBC批处理功能和rewriteBatchedStatements3. JDBC批量插入的测试4. MybatisPlus#ServiceImpl.saveBatch()5. 结语:如果对大家有帮助,请点赞支持。如果有问题随时在评论中指出,感谢。 1. 序言 MybatisPlus的ServiceImpl类…...

对于相对速度的重新理解

狭义相对论速度合成公式如下, 现在让我们尝试用另一种方式把它推导出来。 我们先看速度的定义, 常规的速度合成方式如下, 如果我们用速度的倒数来理解速度, 原来的两个相对速度合成, 是因为假定了时间单位是一样的&am…...

Scala的属性访问权限(一)默认访问权限

//eg:银行账户存钱取钱 // 账户类: // -balance() 余额 // -deposit() 存钱 // -withdraw() 取钱 // -transfer(to:账户,amount:Dobule)转账 package Test1104 //银行账户class BankAccount(private var balance:Int){def showMoney():Unit {println(s"…...

【算法】(Python)贪心算法

贪心算法: 又称贪婪算法,greedy algorithm。贪心地追求局部最优解,即每一步当前状态下最优选择。试图通过各局部最优解达到最终全局最优解。但不从整体最优上考虑,不一定全局最优解。步骤:从初始状态拆分成一步一步的…...

条件logistic回归原理及案例分析

前面介绍的二元、多分类、有序Logistic回归都属于非条件Logistic回归,每个个案均是相互独立关系。在实际研究中,还有另外一种情况,即个案间存在配对关系,比如医学研究中配对设计的病例对照研究,此时违反了个案相互独立…...