当前位置: 首页 > news >正文

从0开始深度学习(24)——填充和步幅

1 填充

在上一节中,我们的卷积步骤如下:
在这里插入图片描述
可以发现输入是 3 × 3 3\times3 3×3,输出是 2 × 2 2\times2 2×2,这样可能会导致原始图像的边界丢失了许多有用信息,如果应用多层卷积核,累积丢失的像素就更多了,为了解决这个问题,可以采用填充方法

填充(padding):在输入图像的边界填充元素(通常填充元素是0)

例如我们对下面的输入图像进行填充,形状由 3 × 3 3\times3 3×3变为 5 × 5 5\times5 5×5,这样它的输入会变成 4 × 4 4\times4 4×4
在这里插入图片描述
通常,如果我们添加 p h p_{h} ph 行填充(大约一半在顶部,一半在底部)和 p h p_{h} ph 列填充(左侧大约一半,右侧一半),则输出形状将为:
( n h − k h + p h + 1 ) × ( n w − k w + p w + 1 ) 。 (n_h-k_h+p_h+1)\times(n_w-k_w+p_w+1)。 (nhkh+ph+1)×(nwkw+pw+1)
即意味着输出的高度和宽度将分别增加 p h p_{h} ph p h p_{h} ph

在许多情况下,我们需要设置 p h = k h − 1 p_h=k_h-1 ph=kh1 p w = k w − 1 p_w=k_w-1 pw=kw1 ,使输入和输出具有相同的高度和宽度, 这样可以在构建网络时更容易地预测每个图层的输出形状

  • 如果 k h k_h kh 是奇数,我们将在高度的两侧填充 p h / 2 p_h/2 ph/2 行,宽度同理。
  • 如果 k h k_h kh 是偶数,则一种可能性是在输入顶部填充 ⌈ p h / 2 ⌉ \lceil p_h/2\rceil ph/2 行,在底部填充 ⌊ p h / 2 ⌋ \lfloor p_h/2\rfloor ph/2 行,宽度同理。

卷积神经网络中卷积核的高度和宽度通常为奇数,例如1、3、5或7。 这样保持空间维度的同时,我们可以在顶部和底部填充相同数量的行,在左侧和右侧填充相同数量的列。下面的例子展示了填充后和不填充两种情况下,经过 3 × 3 3\times3 3×3卷积核做卷积操作后的输入图像形状

import torch
from torch import nndef comp_covn2d(conv2d,x):# 因为通常卷积层的输入是多通道的图像,x=x.reshape((1,1)+x.shape)y=conv2d(x)return y.reshape(y.shape[2:])# 去掉前两个维度(batch_size和num_channels),只关心卷积后的特征图的高度和宽度。conv2d_padding=nn.Conv2d(1,1,kernel_size=3,padding=1)
conv2d=nn.Conv2d(1,1,kernel_size=3)x=torch.rand(size=(8,8))print("padding:",comp_covn2d(conv2d_padding,x).shape)
print("nopadding:",comp_covn2d(conv2d,x).shape)

运行结果
在这里插入图片描述

当卷积核的高度和宽度不同时,我们可以填充不同的高度和宽度,使输出和输入具有相同的高度和宽度。在如下示例中,我们使用高度为5,宽度为3的卷积核,高度和宽度两边的填充分别为2和1。

conv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape

运行结果
在这里插入图片描述

2 步幅

有时,我们可能希望大幅降低图像的宽度和高度。例如,如果我们发现原始的输入分辨率十分冗余,则可以使用步幅概念,快速的降低输出的维数

在计算互相关时,卷积窗口从输入张量的左上角开始,向下、向右滑动。 在前面的例子中,我们默认每次滑动一个元素。但是,有时候为了高效计算或是缩减采样次数,卷积窗口可以跳过中间位置,每次滑动多个元素。

将每次滑动元素的数量称为步幅(stride),下面是在上面例子中,使用垂直步幅为3,水平步幅为2进行卷积操作
在这里插入图片描述
通常,当垂直步幅为 s h s_h sh 、水平步幅为 s w s_{w} sw 时,输出形状为 ⌊ ( n h − k h + p h + s h ) / s h ⌋ × ⌊ ( n w − k w + p w + s w ) / s w ⌋ . \lfloor(n_h-k_h+p_h+s_h)/s_h\rfloor \times \lfloor(n_w-k_w+p_w+s_w)/s_w\rfloor. ⌊(nhkh+ph+sh)/sh×⌊(nwkw+pw+sw)/sw.

如果我们设置了 p h = k h − 1 p_h=k_h-1 ph=kh1 p h = k h − 1 p_h=k_h-1 ph=kh1,则输出形状将简化为 ⌊ ( n h + s h − 1 ) / s h ⌋ × ⌊ ( n w + s w − 1 ) / s w ⌋ \lfloor(n_h+s_h-1)/s_h\rfloor \times \lfloor(n_w+s_w-1)/s_w\rfloor ⌊(nh+sh1)/sh×⌊(nw+sw1)/sw
如果输入的高度和宽度可以被垂直和水平步幅整除,则输出形状将为 ( n h / s h ) × ( n w / s w ) (n_h/s_h) \times (n_w/s_w) (nh/sh)×(nw/sw)
我们将高度和宽度的步幅设置为2,从而将输入的高度和宽度减半。

conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, x).shape

运行结果
在这里插入图片描述

相关文章:

从0开始深度学习(24)——填充和步幅

1 填充 在上一节中,我们的卷积步骤如下: 可以发现输入是 3 3 3\times3 33,输出是 2 2 2\times2 22,这样可能会导致原始图像的边界丢失了许多有用信息,如果应用多层卷积核,累积丢失的像素就更多了&#…...

CPU Study - Instructions Fetch

参考来源:《超标量处理器设计》—— 姚永斌 N-Way CPU 取指问题 如果CPU可以在每个周期内同时解码N条指令,则此类CPU为N-Way超标量处理器。 N-Way超标量处理器需要每个周期从I-Cache中至少取得N条指令,这N条指令成为一组Fetch Group。 为了…...

GJ Round (2024.9) Round 1~7

前言: 点此返回 GJ Round 目录 博客园可能食用更佳 Round 1 (9.10) A 洛谷 P10059 Choose 不难发现结论:记长度为 L L L 时对应的 X X X 最大值为 f ( L ) f(L) f(L),则 f ( L ) f(L) f(L) 单调不降 那么就可以考虑使用二分求出最小的…...

【CMCL】多模态情感识别的跨模态对比学习

abstract 近年来,多模态情感识别因其能够通过整合多模态信息来提高情感识别的准确性而受到越来越多的关注。然而,模态差异导致的异质性问题对多模态情感识别提出了重大挑战。在本文中,我们提出了一个新的框架——跨模态对比学习(…...

输入/输出系统

一、I/O 系统基本概念(了解即可) 1. 输入/输出系统 【总结】: “I/O” 就是 “输入 / 输出”(Input/Output),I/O 设备就是可以将数据输入到计算机,或者可以接收计算机输出数据的外部设备。 输…...

asp.net+uniapp养老助餐管理系统 微信小程序

文章目录 项目介绍具体实现截图技术介绍mvc设计模式小程序框架以及目录结构介绍错误处理和异常处理java类核心代码部分展示详细视频演示源码获取 项目介绍 以往流浪猫狗的救助网站相关信息的管理,都是工作人员手工统计。这种方式不但时效性低,而且需要查…...

部署istio应用未能产生Envoy sidecar代理

1. 问题描述及原因分析 在部署Prometheus、Grafana、Zipkin、Kiali监控度量Istio的第2.2章节,部署nginx应用,创建的pod并没有产生Envoy sidecar代理,仅有一个应用容器运行中 故在随后的prometheus中也没有产生指标istio_requests_total。通…...

使用YOLO 模型进行线程安全推理

使用YOLO 模型进行线程安全推理 一、了解Python 线程二、共享模型实例的危险2.1 非线程安全示例:单个模型实例2.2 非线程安全示例:多个模型实例 三、线程安全推理3.1 线程安全示例 四、总结4.1 在Python 中运行多线程YOLO 模型推理的最佳实践是什么&…...

ABAP 增强

一、增强 基于SAP源代码的增强:对SAP所预留的空的子过程进行编码,用户可以编辑此子过程,并在这个子过程中添加自定义的代码,以增加SAP标准程序的控制功能 PERFORM 基于函数的增强:SAP为此类出口提供了相应的函数&am…...

vue使用方法创建组件

vue 中 创建 组件 使用 方法创建组件 vue2 中 import vueComponent from xxxx function createFn(){const creator Vue.extend(vueComponent);const instance new creator();document.appendChild(instance.$el); }vue3 中 import { createApp } from "vue"; im…...

HTML 基础标签——链接标签 <a> 和 <iframe>

文章目录 1. `<a>` 标签属性详细说明示例2. `<iframe>` 标签属性详细说明示例注意事项总结链接标签在HTML中是实现网页导航的重要工具,允许用户从一个页面跳转到另一个页面或嵌入外部内容。主要的链接标签包括 <a> 标签和<iframe> 标签。本文将深入探…...

@SpringBootApplication源码解析

1 简介 1.1 什么是自动装配&#xff1f; 自动装配是指 Spring Boot 在启动时&#xff0c;根据类路径上的依赖项自动配置应用程序。例如&#xff0c;如果你的应用程序依赖于 Spring Data JPA&#xff0c;Spring Boot 会自动配置一个 DataSource、EntityManagerFactory 和其他必…...

【实战篇】requests库 - 有道云翻译爬虫 【附:代理IP的使用】

目录 〇、引言一、目标二、请求参数分析三、响应分析四、编写爬虫脚本【隧道代理的使用】 〇、引言 无论是学习工作、旅游出行、跨境电商、日常交流以及一些专业领域都离不开翻译工具的支持。本文就带大家通过爬虫的方式开发一款属于自己的翻译工具~ 一、目标 如下的翻译接口…...

法语动词变位

法语动词变位是法语语法的核心内容之一&#xff0c;因为法语动词的形式会根据人称&#xff08;谁做某事&#xff09;、时态&#xff08;动作发生的时间&#xff09;、语气&#xff08;说话人的态度&#xff09;和语态&#xff08;动作的执行者和接受者&#xff09;发生变化。接…...

Excel:vba实现批量插入图片

实现的效果&#xff1a; 实现的代码&#xff1a; Sub InsertImageNamesAndPictures()Dim PicPath As StringDim PicName As StringDim PicFullPath As StringDim RowNum As IntegerDim Pic As ObjectDim Name As String 防止表格里面有脏数据Cells.Clear 遍历工作表中的每个图…...

Vue3的router和Vuex的学习笔记整理

一、路由的基本搭建 1、安装 npm install vue-router --registryhttps://registry.npmmirror.com 2、配置路由模块 第一步&#xff1a;src/router/index.js创建文件 第二步&#xff1a;在src/view下面创建两个vue文件&#xff0c;一个叫Home.vue和About.vue 第三步&#x…...

设置JAVA以适配华为2288HV2服务器的KVM控制台

华为2288HV2服务器比较老旧了&#xff0c;其管理控制台登录java配置比较麻烦&#xff0c;华为的ibmc_kvm_client_windows客户端测试了几个版本&#xff0c;连接控制台也有问题&#xff0c;最终安装JDK解决。 一、测试环境 主机为WindowsServer2012R2,64位系统 二、Java软件包…...

掌握Qt调试技术

文章目录 前言一、Qt调试的基本概念二、Qt调试工具三、Qt调试实践四、Q调试技巧五、总结前言 在软件开发中,调试是一个至关重要的环节。Qt作为一个广泛使用的跨平台C++图形用户界面应用程序开发框架,其调试技术也显得尤为重要。本文将深入探讨Qt调试技术,帮助读者更好地掌握…...

使用NVM自由切换nodejs版本

一、NVM介绍 在日常开发中&#xff0c;我们可能需要同时进行多个不同NodeJS版本的项目开发&#xff0c;每个项目所依赖的nodejs版本可能不一致&#xff0c;我们如果只安装一个版本的nodejs&#xff0c;就可能出现node版本冲突问题&#xff0c;导致项目无法启动。这种情况下&am…...

同三维T610UHK USB单路4K60采集卡

USB单路4K60HDMI采集卡,支持1路4K60HDMI输入和1路4K60HDMI环出&#xff0c;1路MIC输入1路Line IN音频输入和1路音频输出&#xff0c;录制支持4K60、1080P120,TYPE-C接口&#xff0c;环出支持1080P240 HDR 一、产品简介&#xff1a; 同三维T610UHK是一款USB单路4K60HDMI采集卡,…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...