当前位置: 首页 > news >正文

MySQL中distinct与group by之间的性能进行比较

在 MySQL 中,DISTINCTGROUP BY 都是用于去重或汇总数据的常用 SQL 语法。尽管它们在某些情况下能产生相同的结果,但它们的内部工作方式和性能表现可能有所不同。理解这两者的差异,对于选择正确的语法非常重要,尤其是在处理大量数据时。

1. DISTINCT vs GROUP BY:语法和使用场景

  • DISTINCT

    • 用于去除查询结果中的重复行。
    • 通常用于返回一组唯一的值,不进行汇总操作。
    • 语法简单,适用于只需要去重的场景。

    示例:

    SELECT DISTINCT column1, column2 FROM my_table;
    
  • GROUP BY

    • 用于对数据进行分组,通常用于汇总数据(例如计算平均值、总和、计数等)。
    • 也可以用来去除重复的行,尤其是在没有聚合函数的情况下。
    • 适用于需要对分组数据进行统计、聚合等操作的场景。

    示例:

    SELECT column1, column2 FROM my_table GROUP BY column1, column2;
    

2. 性能比较

尽管 DISTINCTGROUP BY 语法上有所不同,但在许多场景下,MySQL 会生成相似的查询计划,特别是当没有聚合函数时。具体的性能差异取决于数据库优化器、表结构、索引以及查询的复杂性。

(1) 没有聚合函数的情况下:
  • 当没有聚合函数(如 COUNTSUMAVG 等)时,DISTINCTGROUP BY 在结果上是等效的,都会返回唯一的行。
  • 在这种情况下,它们之间的性能差异较小,通常取决于执行计划的选择。如果有索引支持,MySQL 会更倾向于选择一个更高效的执行方式。
(2) 有聚合函数的情况下:
  • GROUP BY 更适合用于聚合数据,并且通常与聚合函数(如 COUNT()SUM()AVG() 等)一起使用。
  • DISTINCT 不能直接用于聚合,因此不能像 GROUP BY 那样执行统计操作。
(3) 性能差异分析:
  1. DISTINCT

    • MySQL 可能会使用排序(ORDER BY)或者哈希操作来去重数据,这通常需要在内存中进行排序或哈希操作。如果结果集非常大,可能会使用磁盘来存储临时文件,从而影响性能。
    • 例如,SELECT DISTINCT column1, column2 FROM my_table; 会要求 MySQL 对所有结果进行排序或哈希,确保唯一性。
  2. GROUP BY

    • GROUP BY 也通常会使用排序或哈希来分组数据,但它同时还可以与聚合函数一起工作(如 COUNT()SUM() 等)。因此,在没有聚合函数时,它的性能可能与 DISTINCT 相似,取决于优化器如何选择执行计划。
    • 在执行 GROUP BY 时,MySQL 可能会执行类似的操作,但如果没有聚合函数,GROUP BY 通常会执行更多的操作,因为它不仅仅是去重,还涉及到数据分组和排序。
(4) 索引的影响:
  • DISTINCT:如果在查询的列上有合适的索引,DISTINCT 可以直接利用该索引来去重,从而提高性能。
  • GROUP BYGROUP BY 也可以利用索引,特别是当分组列已被索引时。MySQL 可以通过索引来避免对数据进行全表扫描,从而提高性能。

3. 优化和实际应用建议

  • 当没有聚合函数时

    • 在没有聚合函数的情况下,DISTINCTGROUP BY 都可以用来去重,但如果查询的列已经有合适的索引,DISTINCT 可能会稍微更高效一些,因为它没有分组的开销。
    • 但是,性能差异通常是微乎其微的,具体表现取决于执行计划和表的大小。
  • 当有聚合函数时

    • 使用 GROUP BY 是必须的。如果查询需要统计信息(如计数、求和、平均值等),GROUP BY 是唯一可行的选择。
  • 优化建议

    • 创建合适的索引:无论是 DISTINCT 还是 GROUP BY,都可以通过合适的索引(尤其是覆盖索引)来加速查询。如果查询的列是组合索引的一部分,查询速度会显著提高。
    • 避免不必要的排序DISTINCTGROUP BY 可能会引发排序操作,尤其是在没有合适索引时。可以使用 EXPLAIN 来分析查询的执行计划,看看是否发生了排序(Using filesort)。
    • 减少返回的列数:尽量只查询必要的列,避免 SELECT *,以减少数据传输和内存开销。

4. 实际示例

假设有一个包含 100 万条数据的表 orders,其中有两个字段:customer_idorder_date,我们希望查询每个客户的唯一订单日期。

使用 DISTINCT

SELECT DISTINCT customer_id, order_date 
FROM orders;

使用 GROUP BY

SELECT customer_id, order_date 
FROM orders 
GROUP BY customer_id, order_date;

这两条查询的执行计划可能非常相似,且性能差异通常不大,尤其是在索引支持的情况下。不过,如果查询中包含了聚合函数(如 COUNT()SUM()),GROUP BY 必须是首选。

5. 总结

  • 相同点DISTINCTGROUP BY 在没有聚合函数时都能返回唯一的记录,且都可能利用索引来加速查询。
  • 性能差异
    • 对于没有聚合函数的简单去重操作,DISTINCT 可能会稍微更高效,特别是当查询列有索引时。
    • 对于需要分组或聚合的操作,GROUP BY 是唯一可行的选择。
    • 在实际应用中,性能差异通常较小,更多取决于查询的数据量、索引设计以及执行计划。
  • 优化建议:无论是使用 DISTINCT 还是 GROUP BY,确保查询涉及的列有合适的索引,避免不必要的排序操作,以提高性能。

相关文章:

MySQL中distinct与group by之间的性能进行比较

在 MySQL 中,DISTINCT 和 GROUP BY 都是用于去重或汇总数据的常用 SQL 语法。尽管它们在某些情况下能产生相同的结果,但它们的内部工作方式和性能表现可能有所不同。理解这两者的差异,对于选择正确的语法非常重要,尤其是在处理大量…...

计算机视觉读书系列(1)——基本知识与深度学习基础

研三即将毕业,后续的工作可能会偏AI方向的计算机视觉方面,因此准备了两条线来巩固计算机视觉基础。 一个是本系列,阅读经典《Deep Learning for Vision System》,做一些总结跑一些例子,也对应本系列文章 二是OpenCV实…...

怎么查看navicat的数据库密码

步骤1:打开navicat连接数据库工具&#xff0c;顶部的文件栏-导出结果-勾选导出密码-导出 步骤2&#xff1a;导出结果使用NotePad或文本打开&#xff0c;找到&#xff0c;数据库对应的的Password"995E66F64A15F6776“”的值复制下来 <Connection ConnectionName"…...

webrtc前端播放器完整案例

https://download.csdn.net/download/jinhuding/89961792...

GORM优化器和索引提示

在使用 GORM 进行数据库操作时&#xff0c;优化器和索引提示可以帮助你提高查询性能。GORM 提供了一些方法来利用这些特性。 优化器提示 优化器提示&#xff08;Optimizer Hints&#xff09;是数据库系统提供的功能&#xff0c;用于指导查询优化器如何处理查询。不同的数据库…...

linux驱动-i2c子系统框架学习(1)

可以将整个 I2C 子系统用下面的框图来描述&#xff1a; 可以将上面这一 I2C 子系统划分为三个层次&#xff0c;分别为用户空间、内核空间和硬件层&#xff0c;内核空间就包括 I2C 设备驱动层、I2C 核心层和 I2C 适配器驱动层&#xff0c; 本篇主要内容就是介绍 I2C 子系统框架中…...

元戎启行嵌入式面试题及参考答案

介绍下 CAN 通信原理 控制器局域网(CAN)是一种串行通信协议,主要用于汽车、工业自动化等领域的电子控制单元(ECU)之间的通信。 其通信原理是基于多主站架构。在总线上,多个节点(设备)都可以主动发起通信。CAN 协议使用差分信号来传输数据,通过两条信号线 CAN_H 和 CAN…...

【EasyExcel】EasyExcel导出表格包含合计行、自定义样式、自适应列宽

目录 0 EasyExcel简介1 Excel导出工具类设置自定义表头样式设置自适应列宽添加合计行 2 调用导出工具类导出Excel表3 测试结果 0 EasyExcel简介 在数据处理和报表生成的过程中&#xff0c;Excel是一个非常常用的工具。特别是在Java开发中&#xff0c;EasyExcel库因其简单高效而…...

es数据同步(仅供自己参考)

数据同步的问题分析&#xff1a; 当MySQL进行增删改查的时候&#xff0c;数据库的数据有所改变&#xff0c;这个时候需要修改es中的索引库的值&#xff0c;这个时候就涉及到了数据同步的问题 解决方法&#xff1a; 1、同步方法&#xff1a; 当服务对MySQL进行增删改的时候&…...

apt镜像源制作-ubuntu22.04

# 安装必要的软件 sudo apt-get install -y apt-mirror # 编辑/etc/apt/mirror.list,添加以下内容 set base_path /var/spool/apt-mirror # 指定要镜像的Ubuntu发布和组件-null dir jammy-updates main restricted universe multiverse # 镜像的Ubuntu发布和组件的URL-n…...

libaom 源码分析: 预测编码过程梳理

AV1 预测编码中核心技术 AV1(AOMedia Video 1)作为一种开源的视频编码格式,其预测编码核心技术主要包括以下几个方面: 分区树分割模块: AV1利用多类型分割模式,递归地对图像/视频序列进行分区,以捕捉更丰富的空间信息,从而提升编码效率。这包括新的方向预测分割模式及…...

从0开始学习Linux——Yum工具

往期目录&#xff1a; 从0开始学习Linux——简介&安装 从0开始学习Linux——搭建属于自己的Linux虚拟机 从0开始学习Linux——文本编辑器 上一个章节我们简单了解了Linux中常用的一些文本编辑器&#xff0c;本次教程我们将学习yum工具。 一、Yum简介 Yum&#xff08;全名…...

【Linux】Linux管道揭秘:匿名管道如何连接进程世界

&#x1f308;个人主页&#xff1a;Yui_ &#x1f308;Linux专栏&#xff1a;Linux &#x1f308;C语言笔记专栏&#xff1a;C语言笔记 &#x1f308;数据结构专栏&#xff1a;数据结构 &#x1f308;C专栏&#xff1a;C 文章目录 1.什么是管道 &#xff1f;2. 管道的类型2.1 匿…...

【LeetCode】【算法】155. 最小栈

LeetCode 155. 最小栈 题目描述 设计一个支持 push &#xff0c;pop &#xff0c;top 操作&#xff0c;并能在常数时间内检索到最小元素的栈。 实现 MinStack 类: MinStack() 初始化堆栈对象。 void push(int val) 将元素val推入堆栈。 void pop() 删除堆栈顶部的元素。 int …...

3.3 windows,ReactOS系统中页面的换出----1

系列文章目录 文章目录 系列文章目录3.3 页面的换出MiBalancerThread()MmTrimUserMemory&#xff08;&#xff09;MmPageOutVirtualMemory&#xff08;&#xff09; 3.3 页面的换出 在前一节中我们看到&#xff0c;如果有映射的页面已经被倒换到磁盘上即倒换文件中&#xff0c…...

QCustomPlot添加自定义的图例,实现隐藏、删除功能(二)

文章目录 实现步骤:详细代码示例:实现原理和解释:使用方法:其他参考要实现一个支持复选框来控制曲线显示和隐藏的自定义 QCPLegend 类,可以通过继承 QCPLegend 并重写绘制和事件处理方法来实现,同时发出信号通知曲线的状态变更。 实现步骤: 继承 QCPLegend 类,添加绘…...

Linux云计算 |【第五阶段】CLOUD-DAY8

主要内容&#xff1a; 掌握DaemonSet控制器、污点策略&#xff08;NoSchedule、Noexecute&#xff09;、Job / CronJob资源对象、掌握Service服务、服务名解析CluterIP&#xff08;服务名自动发现&#xff09;、&#xff08;Nodeport、Headless&#xff09;、Ingress控制器 一…...

岛屿数量 广搜版BFS C#

和之前的卡码网深搜版是一道题 力扣第200题 99. 岛屿数量 题目描述 给定一个由 1&#xff08;陆地&#xff09;和 0&#xff08;水&#xff09;组成的矩阵&#xff0c;你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接而成&#xff0c;并且四周都是水域。…...

hive切换表底层文件类型以及分隔符

1、改底层文件存储类型&#xff0c;但是一般只会在数据文件与期望类型一致的时候使用&#xff0c;比如load等方式时发现建表时没指定对这样的&#xff0c;因为这个语句不会更改具体的底层文件内容&#xff0c;只改元数据 ALTER TABLE 表名 SET FILEFORMAT 希望类型;2、更改数据…...

ChatGPT o1与GPT-4o、Claude 3.5 Sonnet和Gemini 1.5 Pro的比较

全新的ChatGPT o1模型&#xff08;代号“Strawberry”&#xff09;是OpenAI的最新进展&#xff0c;专注于以前的AI模型难以应对的领域&#xff1a;高层次推理、数学和复杂编程。OpenAI设计o1模型以花费更多时间思考问题&#xff0c;使其在需要逐层推理的任务中提高准确性。本文…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

用鸿蒙HarmonyOS5实现中国象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率&#xff08;或其他自定义指标&#xff09;来调整这些对象的规模&#xff0c;从而帮助应用程序在负…...

鸿蒙(HarmonyOS5)实现跳一跳小游戏

下面我将介绍如何使用鸿蒙的ArkUI框架&#xff0c;实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...

[特殊字符] 手撸 Redis 互斥锁那些坑

&#x1f4d6; 手撸 Redis 互斥锁那些坑 最近搞业务遇到高并发下同一个 key 的互斥操作&#xff0c;想实现分布式环境下的互斥锁。于是私下顺手手撸了个基于 Redis 的简单互斥锁&#xff0c;也顺便跟 Redisson 的 RLock 机制对比了下&#xff0c;记录一波&#xff0c;别踩我踩过…...