Nature Methods | 基于流形约束的RNA速度推断精准解析细胞周期动态调节规律
生信碱移
VeloCycle算法
VeloCycle:基于流形约束的RNA速度推断在细胞周期动态中的精准解析
今天给各位老铁们分享一篇于2024年10月31号发表在 Nature Methods [IF: 36.1] 的文章:"Statistical inference with a manifold-constrained RNA velocity model uncovers cell cycle speed modulations",利用流形约束的 RNA 速度模型进行统计推断,揭示细胞周期的速度调节规律。
▲ DOI: 10.1038/s41592-024-02471-8
摘要
这项研究介绍了一种新颖的RNA速度模型——VeloCycle,该模型基于流形约束的统计推断方法,旨在提高单细胞RNA测序数据中细胞周期速度变化的解析精度。与传统依赖启发式算法的RNA速度分析方法相比,VeloCycle采用贝叶斯框架,将RNA速度与流形估计结合,利用周期流形的基因调控动态更精细地推断细胞周期速度。通过实验数据和模拟验证,研究团队展示了VeloCycle在细胞周期分析中所表现出的高效性和准确性。
▲ 研究团队
Highlights
-
RNA速度分析用于单细胞基因表达的动态推断,但传统模型不稳定并依赖启发式算法。
-
VeloCycle模型整合了速度场和流形估计,在统计推断框架内解决了传统模型的不足。
-
VeloCycle通过流形约束将RNA速度场与基因表达动态联系,特别适用于周期性生物过程(如细胞周期)。
-
模型通过与实时显微成像等实验验证,能够提供可靠的细胞周期速度估计,并适用于小规模数据集。
-
VeloCycle在模拟与真实数据上展示了对周期性过程(例如细胞周期)的准确性,并提供对速度的统计显著性测试和不确定性分析。
研究结果
VeloCycle模型的构建
RNA速度分析用于从静态的单细胞RNA测序数据中重构细胞状态之间的时间关系,但传统方法缺乏动态一致性且易受启发式算法影响。VeloCycle模型在贝叶斯框架中定义了一个周期性流形上的速度场。通过流形学习,模型能够学习基因表达空间的几何结构,为每个细胞分配流形坐标,并确保RNA速度向量切线于基因表达流形。图1a展示了VeloCycle对比传统方法的优势:传统方法的速度方向不受限制,而VeloCycle约束速度向量沿着基因表达流形的切线方向,从而确保了动态一致性。通过这种方式,VeloCycle在单细胞基因表达动态推断中提供了统计上一致的框架。图1e则显示了通过学习流形坐标和速度场进行RNA速度估计的过程,其中速度学习模块调控参数以确保估计的RNA速度准确反映基因动态。
模型验证
在模拟数据的验证中,VeloCycle通过环形相关系数(如图2a所示)表现出与真实基因相位的高度一致性。此外,在不同的数据集规模下的鲁棒性测试表明,VeloCycle在较小数据集上仍然表现良好。图2d的热图展示了不同细胞和基因数量下的模型表现,表明模型对小样本量数据的鲁棒性。
实际数据中的应用
在实际数据中,VeloCycle应用于不同的单细胞RNA测序数据,并验证了其在预测细胞周期阶段的准确性。图3a的散点图显示了模型预测的相位与FACS分选的细胞周期阶段之间的一致性。此外,图3e、3f的散点图展示了基因的表达峰值和振幅,进一步说明了模型在不同基因集下的有效性。
不确定性与速度学习
VeloCycle通过MCMC采样扩展了模型的不确定性表征,发现相关参数间的不确定性存在关联。图4f展示了在不同条件下的不确定性差异,而通过SVI+LRMN变体的应用,模型的偏差得到显著减少,更好地符合真实数据的后验分布。
细胞跟踪与速度验证
通过时间序列显微成像数据验证了VeloCycle的速度推测与实际细胞分裂周期的匹配。图5b中的速度估计显示了细胞周期内速度的变化,尤其是在接近有丝分裂时速度达到最大。
总结与点评
VeloCycle模型的提出是对传统RNA速度分析方法的显著改进,特别是在精细的细胞周期速度估计和不确定性表征方面,其与现代生物信息学中广泛使用的深度学习方法(如autoencoder)对比,提供了更高的可解释性。此外,VeloCycle将流形和速度估计整合,符合系统生物学中对动态一致性的需求。其在细胞周期和基因调控动力学上的应用,与近年来的周期性基因表达研究相呼应,为疾病研究和细胞分化过程的动力学研究提供了新的视角。
简单分享到这里
欢迎各位老铁关注
小编将持续分享前沿最新文献
相关文章:

Nature Methods | 基于流形约束的RNA速度推断精准解析细胞周期动态调节规律
生信碱移 VeloCycle算法 VeloCycle:基于流形约束的RNA速度推断在细胞周期动态中的精准解析 今天给各位老铁们分享一篇于2024年10月31号发表在 Nature Methods [IF: 36.1] 的文章:"Statistical inference with a manifold-constrained RNA velocity…...

在离线环境中使用sealos工具快速部署一套高可用的k8s服务集群
文章目录 项目基础信息工具版本测试环境 下载资源文件下载sealos二进制命令文件下载k8s安装镜像和组件资源下载docker离线安装包下载Docker Registry容器镜像 NFS共享配置coredns服务的DNS解析配置安装配置sealos、k8s服务安装sealos工具导入k8s及相关组件镜像安装 K8s 集群部署…...

ReactPress系列—Next.js 的动态路由使用介绍
ReactPress Github项目地址:https://github.com/fecommunity/reactpress 欢迎提出宝贵的建议,感谢Star。 Next.js 的动态路由使用介绍 Next.js 是一个流行的 React 框架,支持服务端渲染、静态站点生成和动态路由等功能,极大地简化…...

DevOps业务价值流:需求设计最佳实践
DevOps实践正推动着产品快速迭代与高质量交付,但需求设计作为产品开发的关键起点,往往被忽视。它不仅是收集与分析需求的过程,更是将需求转化为可实施产品特性的核心。本文深入探讨DevOps业务价值流中的需求设计,从调研、整理、原…...

A15基于Spring Boot的宠物爱心组织管理系统的设计与实现
🙊作者简介:在校研究生,拥有计算机专业的研究生开发团队,分享技术代码帮助学生学习,独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取,记得注明来意哦~🌹 赠送计算机毕业设计600…...

RC高通滤波器Bode图分析(传递函数零极点)
RC高通滤波器 我们使得R1K,C1uF;电容C的阻抗为Xc; 传递函数 H ( s ) u o u i R X C R R 1 s C R s R C 1 s R C (其中 s j ω ) H(s)\frac{u_{o} }{u_{i} } \frac{R }{X_{C}R} \frac{R }{\frac{1}{sC}R} \fra…...

SpeechT5 模型
微软开源的 SpeechT5 语音模型,主要包括以下功能 语音转文字:用于自动语音识别(ASR)。文字转语音:用于合成音频(TTS)。语音转语音:用于不同声音之间的转换或进行语音增强。 T5 网络…...

网站用户行为分析:方法、工具与实践
摘要:随着互联网发展,网站竞争激烈,用户行为分析对网站建设与运营至关重要。本文综合介绍了基于服务器日志和客户端收集用户行为数据的方法,包括各自优缺点及相关工具;阐述了网站用户分析的五大常规方法;以…...

医疗医药企业新闻稿怎么写?健康行业品牌宣传背书的报纸期刊杂志媒体有哪些
【本篇由 言同数字全球媒体 原创】在撰写医疗、医学和制药相关稿件时,遵循一定的结构和内容规范至关重要。以下是一些写作建议以及适合发表健康类稿件的报纸、杂志及新闻媒体的推荐。 一、稿件写作结构 标题 原则:简洁、明了,能够准确传达主…...

2024-11-06 问AI: [AI面试题] 人工智能如何用于欺诈检测和网络安全?
文心一言 人工智能在欺诈检测和网络安全领域的应用日益广泛,其强大的数据处理和分析能力为这一领域带来了革命性的变化。以下详细介绍人工智能在欺诈检测和网络安全中的具体应用: 一、欺诈检测 身份认证和访问控制: 通过验证用户的身份信息…...

个人3DCoat设置分享
个人3DCoat设置分享 将当前选择的对象置于屏幕正中显示: /键 版本3DCoat 2023 3DCoat自定义快捷键: Quick Pick: Q Transform: T Primitives: Shift A Cut Off : K Res : Shift Clear Space : Delete 隐藏/显示对象: 点击Sculpt Tree中的眼睛按钮 显示隐…...

Spark 程序开发与提交:本地与集群模式全解析
Spark 的介绍与搭建:从理论到实践-CSDN博客 Spark 的Standalone集群环境安装与测试-CSDN博客 PySpark 本地开发环境搭建与实践-CSDN博客 目录 一、本地开发与远程提交测试 (一)问题背景 (二)解决方案 集群环境准…...

Linux编程:DMA增加UDP 数据传输吞吐量并降低延迟
文章目录 0. 引言1. 原理介绍1.1 DMA 与中断的协同机制1.2. DMA优化UDP 数据包发送 2. DMA 配置优化 0. 引言 UDP 网络传输常面临高 CPU 占用、传输延迟和丢包等挑战。本文将介绍 DMA 如何优化 UDP 数据包的发送,以提高吞吐量、减少延迟并降低 CPU 占用。 阅读本文…...

鸿蒙开启无线调试
DevEco Studio没找到通过WI-FI连接手机的可视化操作按钮,就去官网看了下hdc - TCP连接场景 操作也比较简单: 第1步:PC通过USB连接手机/平板; 第2步:在手机/平板的“开发者选项”中打开“无线调试”并记录下IP和端口…...

C. DS循环链表—约瑟夫环 (Ver. I - B)
题目描述 N个人坐成一个圆环(编号为1 - N),从第S个人开始报数,数到K的人出列,后面的人重新从1开始报数。问最后剩下的人的编号。 例如:N 3,K 2,S 1。2号先出列,然后是…...

【刷题】优选算法
优选算法 双指针 202. 快乐数 链接:. - 力扣(LeetCode) 【思路】 第一个实例是快乐数,因为会变为1且不断是1的循环 第二个实例不可能为1,因为会陷入一个没有1的循环 根据两个实例和鸽巢原理可以发现不断的平方和最…...

Python 在PDF中绘制形状(线条、矩形、椭圆形等)
在PDF中绘制图形可以增强文档的视觉效果。通过添加不同类型的形状,如实线、虚线、矩形、圆形等,可以使文档更加生动有趣,提高读者的阅读兴趣。这对于制作报告、演示文稿或是教材特别有用。本文将通过以下几个示例介绍如何使用Python 在PDF中绘…...

《今日制造与升级》是什么级别的期刊?是正规期刊吗?能评职称吗?
问题解答 问:《今日制造与升级》是不是核心期刊? 答:不是,是知网收录的正规学术期刊。 问:《今日制造与升级》级别? 答:国家级。主管单位:中国机械工业联合会 …...

loading为什么不更新
场景:封装好的弹框,按钮上加了个loading状态,根据传入的值弹框提交的模块内容不一样。loading更新过后,但是值没有变。 注)写法一loading不更新,写法二loading值更新。 一、写法一 写法一中的 acceptanc…...

Rust 力扣 - 1652. 拆炸弹
文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 我们只需要遍历长度长度为k的窗口,然后把窗口内数字之和填充到结果数组中的对应位置即可 题解代码 impl Solution {pub fn decrypt(code: Vec<i32>, k: i32) -> Vec<i32> {let n c…...

使用Golang实现开发中常用的【并发设计模式】
使用Golang实现开发中常用的【并发设计模式】 设计模式是解决常见问题的模板,可以帮助我们提升思维能力,编写更高效、可维护性更强的代码 屏障模式 未来模式 管道模式 协程池模式 发布订阅模式 下面是使用 Go 语言实现屏障模式、未来模式、管道模式…...

基于Zynq FPGA对雷龙SD NAND的性能测试评估
文章目录 一、SD NAND特征1.1 SD卡简介1.2 SD卡Block图 二、SD卡样片三、Zynq测试平台搭建3.1 测试流程3.2 SOC搭建 四、软件搭建五、测试结果六、总结 一、SD NAND特征 1.1 SD卡简介 雷龙的SD NAND系列有多种型号,本次测试使用的是CSNP4GCR01-AMW和CSNP32GCR01-A…...

4.WebSocket 配置与Nginx 的完美结合
序言 在现代 web 应用中,WebSocket 作为一种全双工通信协议,为实时数据传输提供了强大的支持。若要确保 WebSocket 在生产环境中的稳定性和性能,使用 Nginx 作为反向代理服务器是一个明智的选择。本篇文章将带你了解如何在 Nginx 中配置 Web…...

Docker:镜像构建 DockerFile
Docker:镜像构建 DockerFile 镜像构建docker build DockerfileFROMCOPYENVWORKDIRADDRUNCMDENTRYPOINTUSERARGVOLUME 镜像构建 在Docker官方提供的镜像中,大部分都是基础镜像,他们只提供某个简单的功能,如果想要一个功能更加丰富…...

浮动路由:实现出口线路的负载均衡冗余备份。
浮动路由 Tip:浮动路由指在多条默认路由基础上加入优先级参数,实现出口线路冗余备份。 ip routing-table //查看路由表命令 路由优先级参数:越小越优 本次实验测试两条默认路由,其中一条默认路由添加优先级参数,设置…...

二叉树的遍历和线索二叉树
二叉树遍历 二叉树结点的定义 typedef struct BiNode{Elemtype data;struct BiNode* lchild, *rchild; }BiNode, *BiTree; 先序 递归算法 void PreOrder1(BiTree T){if(T!NULL){visit(T);PreOrder(T->lchild);PreOrder(T->rchild);} } 非递归算法(栈实现…...

SpringBoot3 集成Junit4
目录 1. 确保项目中包含JUnit 4依赖添加JUnit 4依赖 2. 配置Spring Boot使用JUnit 4在测试类中使用RunWith注解 3. 编写测试代码4、总结 【扩展】RunWith(SpringRunner.class) 中SpringRunner的作用1. **加载 Spring 应用上下文(ApplicationContext)**2.…...

Scala的set的添加删减和查询
添加:最好用于不可变数组,因为它会产生新数组,而不是在原数组上进行修改。 在尾部添加元素 可变数组 删减:按元素值删除元素 - 查询:查询元素是否存在.contains package Test //Set //特点:元素是唯…...

基于微信小程序的移动学习平台的设计与实现+ssm(lw+演示+源码+运行)
摘 要 由于APP软件在开发以及运营上面所需成本较高,而用户手机需要安装各种APP软件,因此占用用户过多的手机存储空间,导致用户手机运行缓慢,体验度比较差,进而导致用户会卸载非必要的APP,倒逼管理者必须改…...

【spark面试题】RDD和DataFrame以及DataSet有什么异同
RDD(Resilient Distributed Dataset): 概念:可理解为分布式的列表。它的每个元素代表数据的一行,具有支持泛型这一显著特点。这种泛型支持让开发人员能够处理各种类型的数据,具有很强的灵活性。例如&#…...