当前位置: 首页 > news >正文

Nature Methods | 基于流形约束的RNA速度推断精准解析细胞周期动态调节规律

生信碱移

VeloCycle算法

VeloCycle:基于流形约束的RNA速度推断在细胞周期动态中的精准解析

今天给各位老铁们分享一篇于2024年10月31号发表在 Nature Methods [IF: 36.1] 的文章:"Statistical inference with a manifold-constrained RNA velocity model uncovers cell cycle speed modulations",利用流形约束的 RNA 速度模型进行统计推断,揭示细胞周期的速度调节规律。

图片

▲ DOI: 10.1038/s41592-024-02471-8

摘要

这项研究介绍了一种新颖的RNA速度模型——VeloCycle,该模型基于流形约束的统计推断方法,旨在提高单细胞RNA测序数据中细胞周期速度变化的解析精度。与传统依赖启发式算法的RNA速度分析方法相比,VeloCycle采用贝叶斯框架,将RNA速度与流形估计结合,利用周期流形的基因调控动态更精细地推断细胞周期速度。通过实验数据和模拟验证,研究团队展示了VeloCycle在细胞周期分析中所表现出的高效性和准确性。

图片

图片

▲ 研究团队

Highlights

  • RNA速度分析用于单细胞基因表达的动态推断,但传统模型不稳定并依赖启发式算法。

  • VeloCycle模型整合了速度场和流形估计,在统计推断框架内解决了传统模型的不足。

  • VeloCycle通过流形约束将RNA速度场与基因表达动态联系,特别适用于周期性生物过程(如细胞周期)。

  • 模型通过与实时显微成像等实验验证,能够提供可靠的细胞周期速度估计,并适用于小规模数据集。

  • VeloCycle在模拟与真实数据上展示了对周期性过程(例如细胞周期)的准确性,并提供对速度的统计显著性测试和不确定性分析。

研究结果

VeloCycle模型的构建

RNA速度分析用于从静态的单细胞RNA测序数据中重构细胞状态之间的时间关系,但传统方法缺乏动态一致性且易受启发式算法影响。VeloCycle模型在贝叶斯框架中定义了一个周期性流形上的速度场。通过流形学习,模型能够学习基因表达空间的几何结构,为每个细胞分配流形坐标,并确保RNA速度向量切线于基因表达流形。图1a展示了VeloCycle对比传统方法的优势:传统方法的速度方向不受限制,而VeloCycle约束速度向量沿着基因表达流形的切线方向,从而确保了动态一致性。通过这种方式,VeloCycle在单细胞基因表达动态推断中提供了统计上一致的框架。图1e则显示了通过学习流形坐标和速度场进行RNA速度估计的过程,其中速度学习模块调控参数以确保估计的RNA速度准确反映基因动态。

图片

模型验证

在模拟数据的验证中,VeloCycle通过环形相关系数(如图2a所示)表现出与真实基因相位的高度一致性。此外,在不同的数据集规模下的鲁棒性测试表明,VeloCycle在较小数据集上仍然表现良好。图2d的热图展示了不同细胞和基因数量下的模型表现,表明模型对小样本量数据的鲁棒性。

图片

实际数据中的应用

在实际数据中,VeloCycle应用于不同的单细胞RNA测序数据,并验证了其在预测细胞周期阶段的准确性。图3a的散点图显示了模型预测的相位与FACS分选的细胞周期阶段之间的一致性。此外,图3e、3f的散点图展示了基因的表达峰值和振幅,进一步说明了模型在不同基因集下的有效性。

图片

不确定性与速度学习

VeloCycle通过MCMC采样扩展了模型的不确定性表征,发现相关参数间的不确定性存在关联。图4f展示了在不同条件下的不确定性差异,而通过SVI+LRMN变体的应用,模型的偏差得到显著减少,更好地符合真实数据的后验分布。

图片

细胞跟踪与速度验证

通过时间序列显微成像数据验证了VeloCycle的速度推测与实际细胞分裂周期的匹配。图5b中的速度估计显示了细胞周期内速度的变化,尤其是在接近有丝分裂时速度达到最大。

图片

总结与点评

VeloCycle模型的提出是对传统RNA速度分析方法的显著改进,特别是在精细的细胞周期速度估计和不确定性表征方面,其与现代生物信息学中广泛使用的深度学习方法(如autoencoder)对比,提供了更高的可解释性。此外,VeloCycle将流形和速度估计整合,符合系统生物学中对动态一致性的需求。其在细胞周期和基因调控动力学上的应用,与近年来的周期性基因表达研究相呼应,为疾病研究和细胞分化过程的动力学研究提供了新的视角。

简单分享到这里

欢迎各位老铁关注

小编将持续分享前沿最新文献

相关文章:

Nature Methods | 基于流形约束的RNA速度推断精准解析细胞周期动态调节规律

生信碱移 VeloCycle算法 VeloCycle:基于流形约束的RNA速度推断在细胞周期动态中的精准解析 今天给各位老铁们分享一篇于2024年10月31号发表在 Nature Methods [IF: 36.1] 的文章:"Statistical inference with a manifold-constrained RNA velocity…...

在离线环境中使用sealos工具快速部署一套高可用的k8s服务集群

文章目录 项目基础信息工具版本测试环境 下载资源文件下载sealos二进制命令文件下载k8s安装镜像和组件资源下载docker离线安装包下载Docker Registry容器镜像 NFS共享配置coredns服务的DNS解析配置安装配置sealos、k8s服务安装sealos工具导入k8s及相关组件镜像安装 K8s 集群部署…...

ReactPress系列—Next.js 的动态路由使用介绍

ReactPress Github项目地址:https://github.com/fecommunity/reactpress 欢迎提出宝贵的建议,感谢Star。 Next.js 的动态路由使用介绍 Next.js 是一个流行的 React 框架,支持服务端渲染、静态站点生成和动态路由等功能,极大地简化…...

DevOps业务价值流:需求设计最佳实践

DevOps实践正推动着产品快速迭代与高质量交付,但需求设计作为产品开发的关键起点,往往被忽视。它不仅是收集与分析需求的过程,更是将需求转化为可实施产品特性的核心。本文深入探讨DevOps业务价值流中的需求设计,从调研、整理、原…...

A15基于Spring Boot的宠物爱心组织管理系统的设计与实现

🙊作者简介:在校研究生,拥有计算机专业的研究生开发团队,分享技术代码帮助学生学习,独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取,记得注明来意哦~🌹 赠送计算机毕业设计600…...

RC高通滤波器Bode图分析(传递函数零极点)

RC高通滤波器 我们使得R1K,C1uF;电容C的阻抗为Xc; 传递函数 H ( s ) u o u i R X C R R 1 s C R s R C 1 s R C (其中 s j ω ) H(s)\frac{u_{o} }{u_{i} } \frac{R }{X_{C}R} \frac{R }{\frac{1}{sC}R} \fra…...

SpeechT5 模型

微软开源的 SpeechT5 语音模型,主要包括以下功能 语音转文字:用于自动语音识别(ASR)。文字转语音:用于合成音频(TTS)。语音转语音:用于不同声音之间的转换或进行语音增强。 T5 网络…...

网站用户行为分析:方法、工具与实践

摘要:随着互联网发展,网站竞争激烈,用户行为分析对网站建设与运营至关重要。本文综合介绍了基于服务器日志和客户端收集用户行为数据的方法,包括各自优缺点及相关工具;阐述了网站用户分析的五大常规方法;以…...

医疗医药企业新闻稿怎么写?健康行业品牌宣传背书的报纸期刊杂志媒体有哪些

【本篇由 言同数字全球媒体 原创】在撰写医疗、医学和制药相关稿件时,遵循一定的结构和内容规范至关重要。以下是一些写作建议以及适合发表健康类稿件的报纸、杂志及新闻媒体的推荐。 一、稿件写作结构 标题 原则:简洁、明了,能够准确传达主…...

2024-11-06 问AI: [AI面试题] 人工智能如何用于欺诈检测和网络安全?

文心一言 人工智能在欺诈检测和网络安全领域的应用日益广泛,其强大的数据处理和分析能力为这一领域带来了革命性的变化。以下详细介绍人工智能在欺诈检测和网络安全中的具体应用: 一、欺诈检测 身份认证和访问控制: 通过验证用户的身份信息…...

个人3DCoat设置分享

个人3DCoat设置分享 将当前选择的对象置于屏幕正中显示: /键 版本3DCoat 2023 3DCoat自定义快捷键: Quick Pick: Q Transform: T Primitives: Shift A Cut Off : K Res : Shift Clear Space : Delete 隐藏/显示对象: 点击Sculpt Tree中的眼睛按钮 显示隐…...

Spark 程序开发与提交:本地与集群模式全解析

Spark 的介绍与搭建:从理论到实践-CSDN博客 Spark 的Standalone集群环境安装与测试-CSDN博客 PySpark 本地开发环境搭建与实践-CSDN博客 目录 一、本地开发与远程提交测试 (一)问题背景 (二)解决方案 集群环境准…...

Linux编程:DMA增加UDP 数据传输吞吐量并降低延迟

文章目录 0. 引言1. 原理介绍1.1 DMA 与中断的协同机制1.2. DMA优化UDP 数据包发送 2. DMA 配置优化 0. 引言 UDP 网络传输常面临高 CPU 占用、传输延迟和丢包等挑战。本文将介绍 DMA 如何优化 UDP 数据包的发送,以提高吞吐量、减少延迟并降低 CPU 占用。 阅读本文…...

鸿蒙开启无线调试

DevEco Studio没找到通过WI-FI连接手机的可视化操作按钮,就去官网看了下hdc - TCP连接场景 操作也比较简单: 第1步:PC通过USB连接手机/平板; 第2步:在手机/平板的“开发者选项”中打开“无线调试”并记录下IP和端口…...

C. DS循环链表—约瑟夫环 (Ver. I - B)

题目描述 N个人坐成一个圆环(编号为1 - N),从第S个人开始报数,数到K的人出列,后面的人重新从1开始报数。问最后剩下的人的编号。 例如:N 3,K 2,S 1。2号先出列,然后是…...

【刷题】优选算法

优选算法 双指针 202. 快乐数 链接:. - 力扣(LeetCode) 【思路】 第一个实例是快乐数,因为会变为1且不断是1的循环 第二个实例不可能为1,因为会陷入一个没有1的循环 根据两个实例和鸽巢原理可以发现不断的平方和最…...

Python 在PDF中绘制形状(线条、矩形、椭圆形等)

在PDF中绘制图形可以增强文档的视觉效果。通过添加不同类型的形状,如实线、虚线、矩形、圆形等,可以使文档更加生动有趣,提高读者的阅读兴趣。这对于制作报告、演示文稿或是教材特别有用。本文将通过以下几个示例介绍如何使用Python 在PDF中绘…...

《今日制造与升级》是什么级别的期刊?是正规期刊吗?能评职称吗?

​问题解答 问:《今日制造与升级》是不是核心期刊? 答:不是,是知网收录的正规学术期刊。 问:《今日制造与升级》级别? 答:国家级。主管单位:中国机械工业联合会 …...

loading为什么不更新

场景:封装好的弹框,按钮上加了个loading状态,根据传入的值弹框提交的模块内容不一样。loading更新过后,但是值没有变。 注)写法一loading不更新,写法二loading值更新。 一、写法一 写法一中的 acceptanc…...

Rust 力扣 - 1652. 拆炸弹

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 我们只需要遍历长度长度为k的窗口&#xff0c;然后把窗口内数字之和填充到结果数组中的对应位置即可 题解代码 impl Solution {pub fn decrypt(code: Vec<i32>, k: i32) -> Vec<i32> {let n c…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...