人脸检测之MTCNN算法网络结构
MTCNN(Multi-task Cascaded Convolutional Networks)是一种用于人脸检测和关键点检测的深度学习模型,特别适合在复杂背景下识别出多尺度的人脸。它通过多任务学习来实现人脸检测和人脸关键点定位(如眼睛、鼻子、嘴巴的位置),实现高精度的人脸区域定位和关键点提取。MTCNN 主要由三个级联网络组成:P-Net、R-Net 和 O-Net。
论文名称:《Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks》https://arxiv.org/pdf/1604.02878
https://arxiv.org/pdf/1604.02878

一、MTCNN 的网络结构
1.P-Net(Proposal Network):
- 作用:快速生成候选窗口。
- 结构:P-Net 是一个全卷积神经网络,负责从图片中生成初步的人脸候选框,并进行非最大值抑制(NMS),保留主要候选窗口。
- 输出:人脸置信度和候选框回归参数。

P-Net(Proposal Network)——生成候选框
网络结构:P-Net 是一个轻量级的卷积网络,由三层卷积层构成,每一层后面都有 ReLU 激活函数。
- Conv1:3x3 卷积核,步长为 1,输出 10 个通道的特征图。
- Max Pooling1:2x2 池化,步长为 2。
- Conv2:3x3 卷积核,步长为 1,输出 16 个通道的特征图。
- Conv3:3x3 卷积核,步长为 1,输出 32 个通道的特征图。
输出层:
- 分类层(Cls):1x1 卷积核,输出通道数为 2,表示人脸和非人脸的置信度。
- 回归层(Reg):1x1 卷积核,输出通道数为 4,用于预测人脸框的偏移量。
功能:
- P-Net 接收输入图像,生成初步的人脸候选框,并输出每个候选框的置信度(人脸概率)和位置偏移。
- 应用非最大值抑制(NMS)去除重叠度高的候选框,减少冗余检测框。
2.R-Net(Refine Network):
- 作用:精确化候选框。
- 结构:接收 P-Net 生成的候选窗口,并过滤掉部分错误窗口,进一步提高人脸检测精度。
- 输出:细化的人脸置信度和候选框位置。

R-Net(Refine Network)——筛选候选框
网络结构:R-Net 是一个中等复杂度的卷积网络,包含三层卷积层和一个全连接层。
- Conv1:3x3 卷积核,步长为 1,输出 28 个通道的特征图。
- Max Pooling1:3x3 池化,步长为 2。
- Conv2:3x3 卷积核,步长为 1,输出 48 个通道的特征图。
- Max Pooling2:3x3 池化,步长为 2。
- Conv3:2x2 卷积核,步长为 1,输出 64 个通道的特征图。
- 全连接层:输出 128 维特征向量,并与 ReLU 激活函数连接。
输出层:
- 分类层(Cls):二分类输出,检测候选区域是否包含人脸。
- 回归层(Reg):输出人脸框位置的四个偏移值。
功能:
- R-Net 接收 P-Net 的候选框,并进一步筛选和校正候选框的边界。
- 再次进行非最大值抑制,去除相邻且重叠较高的框。
3.O-Net(Output Network):
- 作用:最终的人脸框确定与关键点检测。
- 结构:输入来自 R-Net 的候选窗口,进一步细化人脸检测框,最终输出人脸的精确位置和五个关键点(眼睛、鼻子、嘴巴位置)。
- 输出:最终的人脸框、五个关键点的坐标。

O-Net(Output Network)——精确定位并检测关键点
网络结构:O-Net 是一个相对复杂的网络,用于最终的精确化。
- Conv1:3x3 卷积核,步长为 1,输出 32 个通道的特征图。
- Max Pooling1:3x3 池化,步长为 2。
- Conv2:3x3 卷积核,步长为 1,输出 64 个通道的特征图。
- Max Pooling2:3x3 池化,步长为 2。
- Conv3:3x3 卷积核,步长为 1,输出 64 个通道的特征图。
- Max Pooling3:2x2 池化,步长为 2。
- Conv4:2x2 卷积核,步长为 1,输出 128 个通道的特征图。
- 全连接层:输出 256 维特征向量,连接 ReLU 激活函数。
输出层:
- 分类层(Cls):二分类输出,用于最终人脸的判断。
- 回归层(Reg):输出人脸框位置的四个偏移值。
- 关键点检测层(Landmarks):输出 5 个关键点的坐标位置,包括左右眼、鼻尖、嘴角。
功能:
- O-Net 负责进一步细化人脸边框并预测五个关键点。
- 通过关键点预测,进一步提高检测框的精度。
二、级联架构的优点
MTCNN 级联网络架构具有显著的计算效率优势:
- 逐步筛选:P-Net 的计算最为轻量,用于快速筛选大量非人脸区域。后续网络只需处理少量高置信度候选框,减少计算量。
- 逐级优化:每个网络的输出作为下一网络的输入,通过级联的方式,候选框的位置和精度得到逐步优化。
- 多任务学习:由于 O-Net 同时进行人脸检测和关键点检测,利用共享特征实现多任务,提升了模型的整体性能和检测精度。
三、MTCNN 的训练目标
MTCNN 通过多任务损失函数来训练,即结合了分类损失、边框回归损失和关键点回归损失,目标是:
- 人脸分类损失:最小化人脸与非人脸的分类误差。
- 边框回归损失:减小候选框的回归偏差,保证框的位置更准确。
- 关键点回归损失:保证五个关键点的回归误差最小化,以获得更精确的关键点位置。
四、代码实现
该源码是基于pytorch框架实现,源码的GitHub开源地址为:https://github.com/TropComplique/mtcnn-pytorch
https://github.com/TropComplique/mtcnn-pytorch
相关文章:
人脸检测之MTCNN算法网络结构
MTCNN(Multi-task Cascaded Convolutional Networks)是一种用于人脸检测和关键点检测的深度学习模型,特别适合在复杂背景下识别出多尺度的人脸。它通过多任务学习来实现人脸检测和人脸关键点定位(如眼睛、鼻子、嘴巴的位置&#x…...
蓝桥杯顺子日期(填空题)
题目:小明特别喜欢顺子。顺子指的就是连续的三个数字:123、456 等。顺子日期指的就是在日期的 yyyymmdd 表示法中,存在任意连续的三位数是一个顺子的日期。例如 20220123 就是一个顺子日期,因为它出现了一个顺子:123&a…...
Java云HIS医院管理系统源码 病案管理、医保业务、门诊、住院、电子病历编辑
云HIS系统优势 (1)客户/用户角度 无需安装,登录即用 多终端同步,轻松应对工作环境转换 系统使用简单、易上手,信息展示主次分明、重点突出 极致降低用户操作负担:关联功能集中、减少跳转,键盘快…...
【C++的vector、list、stack、queue用法简单介绍】
【知识预告】 vector的介绍及使用list的介绍及使用list与vector的对比stack的介绍和使用queue的介绍和使用priority_queue的介绍和使用 1 vector的介绍及使用 1.1 vector的介绍 vector是表示可变大小数组的序列容器和数组类似,vector也采用连续存储空间来存储元…...
git中使用tag(标签)的方法及重要性
在Git中打标签(tag)通常用于标记发布版本或其他重要提交。 Git中打标签的步骤: 列出当前所有的标签 git tag创建一个指向特定提交的标签 git tag <tagname> <commit-hash>创建一个带注释的标签,通常用于发布版本 git…...
【专题】2024年文旅微短剧专题研究报告汇总PDF洞察(附原数据表)
原文链接: https://tecdat.cn/?p38187 当今时代,各类文化与消费领域呈现出蓬勃发展且不断变革的态势。 微短剧作为新兴内容形式,凭借网络发展与用户需求,从低成本都市题材为主逐步走向多元化,其内容供给类型正历经深…...
celery加速爬虫 使用flower 可视化地查看celery的实时监控情况
重点: celery ==5.4.0 python 3.11 flower ==2.0.1 请对齐celery与flower的版本信息,如果过低会导致报错 报错1: (venv) PS D:\apploadpath\pythonPath\Lib\site-packages> celery -A tasks flower Traceback (most recent call last):File …...
Angular进阶之十:toPromise废弃原因及解决方案
背景 Rxjs从V7开始废弃了toPromise, V8中会删除它。 原因 1:toPromise()只返回一个值 toPromise()将 Observable 序列转换为符合 ES2015 标准的 Promise 。它使用 Observable 序列的最后一个值。 例: import { Observable } from "rxjs"; ………...
python实现RSA算法
目录 一、算法简介二、算法描述2.1 密钥产生2.2 加密过程2.3 解密过程2.4 证明解密正确性 三、相关算法3.1 欧几里得算法3.2 扩展欧几里得算法3.3 模重复平方算法3.4 Miller-Rabin 素性检测算法 四、算法实现五、演示效果 一、算法简介 RSA算法是一种非对称加密算法,…...
可灵开源视频生成数据集 学习笔记
目录 介绍 可灵团队提出了四个模块的改进: video caption 新指标 vtss 动态质量 静态质量 视频自然性 介绍 在视频数据处理中,建立准确且细致的条件是关键,可灵团队认为,解决这一问题需要关注三个主要方面: 文本…...
告别软文营销瓶颈!5招助你突破限制,实现宣传效果最大化
在当今信息爆炸的时代,软文营销作为品牌推广的重要手段之一,面临着日益激烈的竞争和受众日益提高的辨别力。传统的软文营销方式往往难以穿透消费者的心理防线,实现有效的信息传递和品牌塑造。为了突破这一瓶颈,实现宣传效果的最大…...
秋冬进补防肥胖:辨证施补,健康过冬不增脂
中医理论中的秋冬“封藏” 在中医理论中,认为秋冬季节是人体“封藏”的时期,而“封藏”指的是秋冬季节人体应当减少消耗,蓄积能源,此时进补可以使营养物质易于吸收并蓄积于体内,从而增强体质和抵抗力,为来…...
uniapp radio单选
<uni-data-checkbox v-model"selectedValue" :localdata"quTypeList" change"radioChange"/> //产品类型列表 const quTypeList [{ text: 漆面膜, value: 100, }, { text: 改色…...
通熟易懂地讲解GCC和Makefile
1. 嵌入式开发工具链:GCC GCC(GNU Compiler Collection)是一个强大且常用的编译器套件,支持多种编程语言,比如 C 和 C。在嵌入式开发中,GCC 可以帮助我们把人类可读的 C/C 代码编译成机器可以理解的二进制…...
Java Agent使用
文章目录 基本使用premain使用场景 agentmain 关于tools.jar https://docs.oracle.com/en/java/javase/20/docs/specs/jvmti.html com.sun的API,如果使用其他厂商的JVM,可能没有这个API了,比如Eclipse的J9 https://www.ibm.com/docs/en/sdk…...
selenium 点击元素报错element not interactable
描述说明: 我这里是获取一个span标签后并点击,用的元素自带的element.click(),报错示例代码如下: driver.find_element(By.XPATH,//span[id"my_span"]).click() # 或者 elementdriver.find_element(By.XPATH,//span[i…...
【大数据技术基础 | 实验七】HBase实验:部署HBase
文章目录 一、实验目的二、实验要求三、实验原理四、实验环境五、实验内容和步骤(一)验证Hadoop和ZooKeeper已启动(二)修改HBase配置文件(三)启动并验证HBase 六、实验结果七、实验心得 一、实验目的 掌握…...
Android进程保活,lmkd杀进程相关
lmk原理 Android进程回收之LowMemoryKiller原理 lmkd 更新进程oomAdj; 设备端进程被杀可能原因...
SDL 播放PCM
SDL2播放PCM使用SDL2播放PCM音频采样数据。SDL实际上是对底层绘图API(Direct3D,OpenGL)的封装,使用起来明显简单于直接调用底层API。 测试的PCM数据采用采样率44.1k, 采用精度S16SYS, 通道数2 函数调用步骤如下: [初始化]SDL_In…...
基于MPPT最大功率跟踪的光伏发电蓄电池控制系统simulink建模与仿真
目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于MPPT最大功率跟踪的光伏发电蓄电池控制系统simulink建模与仿真。本系统包括PV模块,电池模块,电池控制器模块,MPPT模块,PWM模…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
基于PHP的连锁酒店管理系统
有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发,数据库mysql,前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能
指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...
DeepSeek越强,Kimi越慌?
被DeepSeek吊打的Kimi,还有多少人在用? 去年,月之暗面创始人杨植麟别提有多风光了。90后清华学霸,国产大模型六小虎之一,手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水,单月光是投流就花费2个亿。 疯…...
从实验室到产业:IndexTTS 在六大核心场景的落地实践
一、内容创作:重构数字内容生产范式 在短视频创作领域,IndexTTS 的语音克隆技术彻底改变了配音流程。B 站 UP 主通过 5 秒参考音频即可克隆出郭老师音色,生成的 “各位吴彦祖们大家好” 语音相似度达 97%,单条视频播放量突破百万…...
DAY 45 超大力王爱学Python
来自超大力王的友情提示:在用tensordoard的时候一定一定要用绝对位置,例如:tensorboard --logdir"D:\代码\archive (1)\runs\cifar10_mlp_experiment_2" 不然读取不了数据 知识点回顾: tensorboard的发展历史和原理tens…...
