当前位置: 首页 > news >正文

计算网络信号

题目描述:
网络信号经过传递会逐层衰减,且遇到阻隔物无法直接穿透,在此情况下需要计算某个位置的网络信号值。注意:网络信号可以绕过阻隔物
array[m][n]的二维数组代表网格地图,
array[i][j]=0代表i行j列是空旷位置;array[i][j]=x(x为正整数)代表i行j列是信号源,信号强度是x;array[i][j]=-1代表i行j列是阻隔物。
信号源只有1个,阻隔物可能有0个或多个
网络信号衰减是上下左右相邻的网格衰减1
现要求输出对应位置的网络信号值
输入描述:
输入为三行,
第一行为m n,代表输入是一个m*n的数组
第二行是一串m*n个用空格分隔的整数。每连续n个数代表一行,再往后n个代表下一行,以此类推。对应的值代表对应的网格是空旷位置,还是信号源,还是阻隔物
第三行是i j,代表需要计算array[i][j]的网络信号值,注意:此处i和j均从0开始,即第一行i为0
例如:
6 5
0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
1 4
代表如下地图

需要输出第2行第1列的网络信号值,如下图,值为2


输出描述:
输出对应位置的网络信号值,如果网络信号未覆盖到,也输出0。
一个网格如果可以途经不同的传播衰减路径传达,取较大的值作为其信号值。
补充说明:
1、m不一定等于n,m<100,n<100,网络信号值小于1000
2、信号源只有1个,阻隔物可能有0个或多个
3、输入的m,n与第二行的数组是合法的,无需处理数量对不上的异常情况
4、要求输出信号值的位置,不会是阻隔物

示例1
输入:
6 5
0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
2 1
输出:
0
说明:
示例2
输入:
6 5
0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
1 4
输出:
2
说明:

题目描述:
网络信号经过传递会逐层衰减,且遇到阻隔物无法直接穿透,在此情况下需要计算某个位置的网络信号值。注意:网络信号可以绕过阻隔物
array[m][n]的二维数组代表网格地图,
array[i][j]=0代表i行j列是空旷位置;array[i][j]=x(x为正整数)代表i行j列是信号源,信号强度是x;array[i][j]=-1代表i行j列是阻隔物。
信号源只有1个,阻隔物可能有0个或多个
网络信号衰减是上下左右相邻的网格衰减1
现要求输出对应位置的网络信号值
输入描述:
输入为三行,
第一行为m n,代表输入是一个m*n的数组
第二行是一串m*n个用空格分隔的整数。每连续n个数代表一行,再往后n个代表下一行,以此类推。对应的值代表对应的网格是空旷位置,还是信号源,还是阻隔物
第三行是i j,代表需要计算array[i][j]的网络信号值,注意:此处i和j均从0开始,即第一行i为0
例如:
6 5
0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
1 4
代表如下地图

需要输出第2行第1列的网络信号值,如下图,值为2


输出描述:
输出对应位置的网络信号值,如果网络信号未覆盖到,也输出0。
一个网格如果可以途经不同的传播衰减路径传达,取较大的值作为其信号值。
补充说明:
1、m不一定等于n,m<100,n<100,网络信号值小于1000
2、信号源只有1个,阻隔物可能有0个或多个
3、输入的m,n与第二行的数组是合法的,无需处理数量对不上的异常情况
4、要求输出信号值的位置,不会是阻隔物

示例1
输入:
6 5
0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
2 1
输出:
0
说明:
示例2
输入:
6 5
0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
1 4
输出:
2
说明:

题解

BFS 广度优先算法,寻找最短路径

信号值 - 步数

源码

import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;public class Main {// 方向数组,用于表示上下左右四个方向static int[][] directions = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};public static void main(String[] args) {Scanner scanner = new Scanner(System.in);// 读取输入的网格大小 m 和 nint m = scanner.nextInt();int n = scanner.nextInt();// 初始化网格int[][] array = new int[m][n];for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {array[i][j] = scanner.nextInt();}}// 读取目标位置int targetI = scanner.nextInt();int targetJ = scanner.nextInt();// 初始化信号强度数组,-1表示未访问int[][] signal = new int[m][n];for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {signal[i][j] = -1;}}// BFS队列,队列中存储 (x, y, signal_strength)Queue<int[]> queue = new LinkedList<>();// 寻找信号源,将信号源的位置加入队列for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {if (array[i][j] > 0) {  // 找到信号源queue.offer(new int[]{i, j, array[i][j]});signal[i][j] = array[i][j];  // 初始信号值为信号源的值}}}// 开始BFSwhile (!queue.isEmpty()) {int[] current = queue.poll();int x = current[0];int y = current[1];int currentSignal = current[2];// 遍历四个方向for (int[] dir : directions) {int newX = x + dir[0];int newY = y + dir[1];// 判断是否越界或遇到阻隔物if (newX >= 0 && newX < m && newY >= 0 && newY < n && array[newX][newY] != -1) {int newSignal = currentSignal - 1;// 只有信号强度大于0并且比当前信号值大时才更新if (newSignal > 0 && newSignal > signal[newX][newY]) {signal[newX][newY] = newSignal;queue.offer(new int[]{newX, newY, newSignal});}}}}// 输出指定位置的信号值,如果未覆盖到,输出0System.out.println(signal[targetI][targetJ] != -1 ? signal[targetI][targetJ] : 0);}
}

相关文章:

计算网络信号

题目描述&#xff1a; 网络信号经过传递会逐层衰减&#xff0c;且遇到阻隔物无法直接穿透&#xff0c;在此情况下需要计算某个位置的网络信号值。注意&#xff1a;网络信号可以绕过阻隔物 array[m][n]的二维数组代表网格地图&#xff0c; array[i][j]0代表i行j列是空旷位置&…...

【Vue 全家桶】6、vue-router 路由(更新中)

目录 相关理解基本路由嵌套路由路由传参编程式路由导航 相关理解 基本路由 嵌套路由 路由传参 编程式路由导航...

解决程序因缺少xinput1_3.dll无法运行的有效方法,有效修复丢失xinput1_3.dll

如果你的电脑在运行某些应用程序或游戏时提示“xinput1_3.dll丢失”或“找不到xinput1_3.dll”的错误消息&#xff0c;那么很可能是因为你的系统中缺少这个重要的DLL文件而导致的问题。那么电脑出现xinput1_3.dll丢失的问题时有哪些方法进行修复呢&#xff1f; 如何确定电脑是否…...

uni-popup 弹出框

:maskClick"false" 是点击空白遮罩处不关闭弹窗 <uni-popup ref"popup" type"center" :maskClick"false"> <div style"width: 80vw;padding: 0.5em;box-sizing: border-box; background-color: #fff; border-…...

Android笔记:Android中Fragment改变主题

‌在Android中,Fragment使用主题可以通过以下几种方法实现‌: 1 在onCreateView方法中设置主题‌: 在onCreateView方法中,可以通过创建一个ContextThemeWrapper来改变Fragment的主题。例如: @Override public View onCreateView(LayoutInflater inflater, ViewGroup co…...

GEE 训练——利用sentinel-2数据计算两栖NDVI前后差异

目录 简介 函数 expression(expression, map) Arguments: Returns: Image 代码 结果 简介 利用sentinel-2数据计算两栖NDVI前后差异 COPERNICUS/S2是欧洲空间局(ESA)的地球观测计划,旨在通过卫星遥感技术提供全球的高分辨率地球观测数据。S2是COPERNICUS地球观测计…...

看电动缸是如何提高农机的自动化水平

电动缸作为一种将电动机的旋转运动转变为推杆的直线往复运动的电力驱动装置&#xff0c;在提升农机自动化水平方面发挥了重要作用。以下详细分析电动缸如何提高农机的自动化水平&#xff1a; 一、电动缸的工作原理与优势 电动缸的工作原理是以电力作为直接动力源&#xff0c;采…...

C++ 并发专题 - 条件变量的使用

一&#xff1a;概述&#xff1a; 在 C 中&#xff0c;条件变量&#xff08;std::condition_variable&#xff09;是一种用于线程间同步的机制&#xff0c;主要用于在多线程环境中让一个线程等待某个条件满足后再继续执行。条件变量通常配合互斥锁&#xff08;std::mutex&#…...

《Essential C++》学习笔记

《Essential C》这本书&#xff0c;是适合从C选手快速过度到C选手的 一本书&#xff0c;下面是个人记录 第一章&#xff1a;基础语法 第一章主要就是C语言基础&#xff0c;这里类似于表达式 数组 条件语句 循环语句&#xff0c;就不多概述了。 :::info vector&#xff1a;可动…...

揭秘!微服务架构下,Apollo 配置中心凭啥扮演关键角色?

在当今的微服务架构蓬勃发展的时代&#xff0c;配置中心扮演着极为关键的角色&#xff0c;其重要性不言而喻。今天&#xff0c;我们就以 Apollo 为例&#xff0c;聊聊配置中心在微服务架构中的重要意义。 一、微服务架构下的配置管理挑战 随着微服务架构的广泛应用&#xff0…...

每日OJ题_牛客_春游_贪心+数学_C++_Java

目录 牛客_春游_贪心数学 题目解析 C代码 Java代码 牛客_春游_贪心数学 春游 描述&#xff1a; 盼望着&#xff0c;盼望着&#xff0c;东风来了&#xff0c;春天脚步近了。 值此大好春光&#xff0c;老师组织了同学们出去划船&#xff0c;划船项目收费如下&#xff1a;…...

JavaWeb--Maven

1.初始Maven 1.1介绍 Maven 是一款用于管理和构建Java项目的工具&#xff0c;是Apache旗下的一个开源项目 。 1.2Maven的作用 2.Maven概述 2.1Maven介绍 Apache Maven是一个项目管理和构建工具&#xff0c;它基于项目对象模型(Project Object Model , 简称: POM)的概念&am…...

计算机网络——网络层导论

转发是局部功能——数据平面 路由是全局的功能——控制平面 网卡 网卡&#xff0c;也称为网络适配器&#xff0c;是计算机硬件中的一种设备&#xff0c;主要负责在计算机和网络之间进行数据传输。 一、主要功能 1、数据传输&#xff1a; 发送数据时&#xff0c;网卡将计算机…...

使用 JPA 的 `save()` 方法更新数据库中的数据

在开发基于 JPA&#xff08;Java Persistence API&#xff09;的应用时&#xff0c;数据持久化操作中的常见问题是执行 save() 方法后数据库中的数据没有更新。本文将详细介绍 JPA 的 save() 方法如何工作、其可能出现的问题&#xff0c;以及如何解决这些问题&#xff0c;以确保…...

Obsidian的Git插件设置配置全流程 -- 简单的电脑端多平台同步方案及常见问题

Obsidian的Git插件设置配置全流程 -- 简单的电脑端多平台同步方案及常见问题 参考文章引言1. git 介绍及安装2. git 本地配置及远程仓库链接3. obsidian 的 git 插件4. 常用的使用场景和对应的命令4.1. 本地仓库已推送到远端&#xff0c;如何在另一个电脑上第一次同步4.2 多端同…...

MapReduce 的 Shuffle 过程

MapReduce 的 Shuffle 过程指的是 MapTask 的后半程&#xff0c;以及ReduceTask的前半程&#xff0c;共同组成的。 从 MapTask 中的 map 方法结束&#xff0c;到 ReduceTask 中的 reduce 方法开始&#xff0c;这个中间的部分就是Shuffle。是MapReduce的核心&#xff0c;心脏。 …...

【Linux】进程控制——创建,终止,等待回收

目录 进程创建fork再介绍写时拷贝 进程终止退出码退出方式 进程等待获取子进程statuswaitwaitpid 在前两篇进程概念中&#xff0c;对进程进行了介绍&#xff0c;进行了初步认识&#xff0c;也认识到了与之相关联的进程地址空间&#xff1b;本文则对进程的生命周期——创建&…...

新手必看,17个常见的Python运行时错误

初入门的 Pythoner 在运行代码时免不了会遇到一些错误&#xff0c;刚开始可能看起来比较费劲。 随着代码量的积累&#xff0c;熟能生巧&#xff0c;当遇到一些运行时错误时能够很快的定位问题原题。 下面整理了常见的 17 个错误&#xff0c;希望能够帮助到大家。 1、忘记在 …...

pdf 添加页眉页脚,获取前五页

test /*** 加水印、页眉、页脚*/ Test void d1() throws IOException {//水印 样式调整String file "D:\\test\\2\\GB1.pdf";PdfUtil.WatermarkPDF(file); } /*** 获取前五页*/ Test void d2() throws IOException {String file "E:\\test\\2\\3.pdf";P…...

SQL 实战问题解析

在数据分析和数据库操作中&#xff0c;SQL 查询是至关重要的一环。本文将通过分析四道典型的 SQL 题目&#xff0c;深入探讨如何从复杂的业务需求中构建准确高效的 SQL 查询。 一、删除学生表冗余信息 需求解读 给定一个学生表&#xff0c;其中包含自动编号、学号、姓名、课程编…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...