当前位置: 首页 > news >正文

【面试题】Hive 查询:如何查找用户连续三天登录的记录

1. 需求概述

在分析用户行为时,查询用户的连续登录数据是一个常见需求。例如,我们需要找出每个用户连续三天登录的记录。给定一个包含用户登录记录的表,我们需要对这些数据进行处理,提取出用户连续三天登录的日期。

2. 问题说明

假设我们有一个用户登录记录表 user_log,表结构如下:

iddt
12024-04-25
12024-04-26
12024-04-27
12024-04-28
12024-04-30
12024-05-01
12024-05-02
12024-05-04
12024-05-05
22024-04-25
22024-04-28
22024-05-02
22024-05-03
22024-05-04

我们的目标是找出每个用户连续三天登录的所有数据记录,期望的输出结果如下:

iddt
12024-04-25
12024-04-26
12024-04-27
12024-04-28
12024-04-30
12024-05-01
12024-05-02
22024-05-02
22024-05-03
22024-05-04

3. 查询思路

为了完成这个任务,我们可以利用 Hive SQL 的窗口函数来处理这个问题。主要的思路是:

  1. 窗口函数的使用:通过 LEAD() 函数获取当前登录记录的下一天和下两天的日期。
  2. 日期差计算:计算当前日期和下一天、下两天的日期差,判断是否为连续的三天。
  3. 筛选符合条件的数据:最终筛选出满足条件(即连续三天登录)的数据记录。

4. 查询实现

下面是具体的 Hive SQL 查询实现:

with t as (select *, lead(dt,1,dt) over(partition by id order by dt) last_day, lead(dt,2,dt) over(partition by id order by dt) last_2_day from user_log
),
t2 as (select *, datediff(last_2_day, dt) date_diff from t
)
select distinct id, d 
from t2 
lateral view explode(map('dt', dt, 'last_day', last_day, 'last_2_day', last_2_day)) tem as s, d 
where date_diff = 2;

5.代码解析

1. 子查询 t

这个子查询为每个用户的登录记录添加了两列,分别是 last_daylast_2_day,它们表示当前记录的下一天和下两天的登录日期。这里使用了窗口函数 LEAD() 来实现。

  • LEAD(dt, 1, dt):这个窗口函数获取当前行的下一天登录日期。如果下一天不存在,则返回当前日期 dt 作为默认值。
  • LEAD(dt, 2, dt):这个窗口函数获取当前行的下两天登录日期。如果下两天不存在,则返回当前日期 dt 作为默认值。
  • PARTITION BY id:按 id 列(即用户ID)对数据进行分组。
  • ORDER BY dt:按日期排序。

所以,t 子查询的结果将会如下(假设数据表 user_log 的某一部分):

iddtlast_daylast_2_day
12024-04-252024-04-262024-04-27
12024-04-262024-04-272024-04-28
12024-04-272024-04-282024-04-30
12024-04-282024-04-302024-05-01
12024-04-302024-05-012024-05-02
12024-05-012024-05-022024-05-04
12024-05-022024-05-042024-05-05

 

2. 子查询 t2

t2 子查询中,我们计算了日期差 date_diff,它表示 last_2_day 和当前登录日期 dt 之间的天数差。使用了 DATEDIFF() 函数来计算两个日期之间的天数差。

  • DATEDIFF(last_2_day, dt):计算 last_2_day 与当前日期 dt 之间的天数差。

date_diff 为 2 的记录说明 dtlast_2_day 是连续的三天登录。

3. LATERAL VIEW 和 EXPLODE

在查询的外层,使用了 LATERAL VIEWEXPLODE 来对数据进行展平操作,并对每个用户的连续三天登录日期进行处理。

  • LATERAL VIEWLATERAL VIEW 用于展开复杂数据类型(如数组或映射)。在这个查询中,LATERAL VIEW 展开了一个映射(map),每个映射包含了 dtlast_day 和 last_2_day 三个字段。
  • EXPLODE(map(...))EXPLODE 会将一个映射中的每个键值对展开为多行。对于每一行数据,都会根据映射的每个键值对创建一行记录。

map('dt', dt, 'last_day', last_day, 'last_2_day', last_2_day) 创建了一个映射(map),映射的键是 'dt''last_day''last_2_day',值分别是 dtlast_daylast_2_day

这将会生成一个包含每个字段名(dtlast_daylast_2_day)和值的结果行。LATERAL VIEW 使得每一行的键值对都展开为多行数据,因此可以进一步进行查询操作。

4. 查询的最终条件

最后,通过 where date_diff = 2 筛选出符合条件的记录。这意味着我们只选取那些连续三天登录的记录(日期差为 2),并通过 distinct 去重。

5. 查询结果示例

在执行查询后,我们将得到如下结果:

iddt
12024-04-25
12024-04-26
12024-04-27
12024-04-28
12024-04-30
12024-05-01
12024-05-02
22024-05-02
22024-05-03
22024-05-04

 这个结果显示了每个用户连续三天登录的记录,符合我们预期的输出。

 

 

相关文章:

【面试题】Hive 查询:如何查找用户连续三天登录的记录

1. 需求概述 在分析用户行为时,查询用户的连续登录数据是一个常见需求。例如,我们需要找出每个用户连续三天登录的记录。给定一个包含用户登录记录的表,我们需要对这些数据进行处理,提取出用户连续三天登录的日期。 2. 问题说明…...

高活跃社区 Doge 与零知识证明的强强联手,QED 重塑可扩展性

在 Web3 的广阔生态中,Doge 无疑是最具标志性和趣味性的项目之一。作为一种起源于网络文化的符号,Doge 从最初的互联网玩笑发展为如今备受全球关注的去中心化资产,依靠其独特的魅力和广泛的用户基础,构建了一个充满活力的社区。 …...

qt QAbstractTableModel详解

1、概述 QAbstractTableModel 是 Qt 框架中的一个类,用于在 Qt 应用程序中实现自定义的表格数据模型。它是 Qt 中的一个抽象基类,提供了创建和操作表格数据所需的接口。QAbstractTableModel 为模型提供了一个标准接口,这些模型将其数据表示为…...

掌握 Navicat 数据库结构设计 | 提升工作效率的秘诀

近期,我们介绍了 Navicat 17 的一系列的新特性,包括:兼容更多数据库、全新的模型设计、可视化 BI、智能数据分析、可视化查询解释、高质量数据字典、增强用户体验、扩展 MongoDB 功能、轻松固定查询结果、便捷 URI、支持更多平台等。今天&…...

Ollama AI 框架缺陷可能导致 DoS、模型盗窃和中毒

近日,东方联盟网络安全研究人员披露了 Ollama 人工智能 (AI) 框架中的六个安全漏洞,恶意行为者可能会利用这些漏洞执行各种操作,包括拒绝服务、模型中毒和模型盗窃。 知名网络安全专家、东方联盟创始人郭盛华表示:“总的来说&…...

vue 3:监听器

目录 1. 基本概念 2. 侦听数据源类型 1. 监听getter函数 2. 监听 ref 或 reactive 的引用 3. 多个来源组成的数组 4. 避免直接传递值!!! 3. 深层侦听器 4. 立即回调的侦听器 5. 一次性侦听器 6. watchEffect() 7. 暂停、恢复和停止…...

Java学习路线:Maven(四)Maven常用命令

在IDEA的Maven模块中,可以看到每个项目都有一个生命周期 这些生命周期实际上是Maven的一些插件,每个插件都有各自的功能,而双击这些插件就可以执行命令 这些命令的功能如下: clean:清除整个 target文件夹&#xff0c…...

服务器数据恢复—分区结构被破坏的reiserfs文件系统数据恢复案例

服务器数据恢复环境: 一台服务器中有一组由4块SAS硬盘组建的RAID5阵列,上层安装linux操作系统统。分区结构:boot分区LVM卷swap分区(按照顺序),LVM卷中划分了一个reiserfs文件系统作为根分区。 服务器故障…...

lua入门教程:type函数

在Lua中,type 函数是一个内置函数,用于返回给定值的类型。Lua 支持多种数据类型,包括 nil(空值)、boolean(布尔值)、number(数字)、string(字符串&#xff09…...

Java图片转word

该方法可以控制一页是否只显示存放一张图片 第一步 <dependency><groupId>org.apache.poi</groupId><artifactId>poi-ooxml</artifactId><version>5.2.3</version></dependency><dependency><groupId>org.apache…...

立体视觉的核心技术:视差计算与图像校正详解

立体视觉的核心技术&#xff1a;视差计算与图像校正详解 在立体视觉中&#xff0c;通过双目相机&#xff08;即左右两台相机&#xff09;的不同视角捕获的图像&#xff0c;结合几何关系&#xff0c;我们可以推算出场景中物体的深度。本文将深入讲解如何基于视差&#xff08;di…...

PaddleNLP的FAQ问答机器人

项目源码获取方式见文章末尾&#xff01; 600多个深度学习项目资料&#xff0c;快来加入社群一起学习吧。 《------往期经典推荐------》 项目名称 1.【DDRNet模型创新实现人像分割】 2.【卫星图像道路检测DeepLabV3Plus模型】 3.【GAN模型实现二次元头像生成】 4.【CNN模型实…...

2024年12月中国多场国际学术会议,EI检索录用!

2024年12月&#xff0c;多场国际学术会议将在中国多地召开&#xff0c;涵盖AI、机器人、大数据、网络安全、传感制造、环境工程、物联网等领域&#xff0c;促进学术交流&#xff0c;录用论文将EI检索&#xff0c;诚邀国内外专家参会。 第三届人工智能、人机交互和机器人国际学…...

日语学习的难易程度

日语学习的难易程度是一个相对主观的问题&#xff0c;它受到多种因素的影响&#xff0c;包括个人的语言学习能力、学习方法、学习时间、学习资源的可获得性以及个人对日语文化的兴趣和投入程度等。以下是对日语学习难易程度的一些分析&#xff1a; 优点与易学之处 文字系统&am…...

java-web-web后端知识小结

spring框架三大核心: IOC--控制反转 DI---依赖注入 AOP--面向切面编程 web开发技术小结 1.过滤器,JWT令牌 2.三层架构 IOC, DI AOP, 全局异常处理, 事务管理 mybatis 3.数据操作与存储 mysql 阿里云OSS(云存储) 各个技术的归属: 1.过滤器, cookie,session--javaWeb 2.JWT, 阿里…...

常见的排序算法(二)

归并排序 归并排序&#xff08;Merge Sort&#xff09;是一种基于分治法&#xff08;Divide and Conquer&#xff09;的排序算法。它将一个大的问题分解成小的问题&#xff0c;然后递归地解决这些小问题&#xff0c;最后合并&#xff08;merge&#xff09;得到最终的排序结果。…...

spark的RDD分区的设定规则

目录 一、第一种&#xff1a;parallelize 获取rdd时 二、第二种&#xff1a;通过外部读取数据-textFile 三、上面提到了默认分区数&#xff0c;那么默认分区是怎么计算呢&#xff1f; 一、第一种&#xff1a;parallelize 获取rdd时 没有指定&#xff1a;spark.default.paral…...

【点云网络】voxelnet 和 pointpillar

VoxelNet 和 pointpillar 这两个网络可以认为后者是前者的升级版本&#xff0c;都是采用了空间划分的方法&#xff0c; 一个是体素&#xff0c;一个是pillar, 前者是3D卷积处理中间特征&#xff0c;后者是2D卷积处理中间特征。 voxelnet voxelnet 应该是比较早的onestage的网…...

HAL库硬件IIC驱动气压传感器BMP180

环境 1、keilMDK 5.38 2、STM32CUBEMX 初始配置 默认即可。 程序 1、头文件 #ifndef __BMP_180_H #define __BMP_180_H#include "main.h"typedef struct {float fTemp; /*温度&#xff0c;摄氏度*/float fPressure; /*压力&#xff0c;pa*/float fAltitude; /*…...

探索Python音频处理的奥秘:Pydub库的魔法

文章目录 探索Python音频处理的奥秘&#xff1a;Pydub库的魔法第一部分&#xff1a;背景介绍第二部分&#xff1a;Pydub是什么&#xff1f;第三部分&#xff1a;如何安装Pydub&#xff1f;第四部分&#xff1a;Pydub的简单函数使用方法1. 打开音频文件2. 播放音频3. 导出音频文…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...