当前位置: 首页 > news >正文

常见的排序算法(二)

归并排序

归并排序(Merge Sort)是一种基于分治法(Divide and Conquer)的排序算法。它将一个大的问题分解成小的问题,然后递归地解决这些小问题,最后合并(merge)得到最终的排序结果。归并排序的时间复杂度为 ( O(n \log n) ),它是一种稳定的排序算法。由于其稳定性和良好的最坏情况表现,归并排序在许多实际应用中都有着重要的地位。

一、归并排序的基本思想

归并排序的核心思想是将数组分成两个子数组,对这两个子数组分别进行排序,排序完成后再将它们合并成一个有序数组。归并排序的分治过程通常通过递归来实现:

  1. 分解:将数组分成两半。
  2. 解决:递归地对这两半数组分别进行归并排序。
  3. 合并:将两个有序的子数组合并成一个有序数组。

这种方法可以持续分解直到每个子数组只有一个元素,因为一个元素的数组默认是有序的。然后通过合并操作将这些有序的子数组组合成一个大的有序数组。

二、归并排序的具体步骤

1. 递归分解

首先,将一个大的数组分解成两个小数组,再递归地对这两个小数组进行归并排序,直到每个数组只有一个元素。

2. 合并操作

合并是归并排序的核心步骤。将两个已经排好序的数组合并成一个有序数组。对于每对元素,比较它们的大小,把较小的元素放入结果数组中,直到所有元素都合并完成。

3. 递归的终止条件

递归终止的条件是子数组的大小为1,此时该子数组已经是有序的,可以进行合并。

三、归并排序的时间复杂度分析

归并排序的时间复杂度为 ( O(n \log n) ),其中:

  • 分解的次数:每次将数组分成两半,直到每个子数组只有一个元素。这个过程是递归的,深度为 ( \log n )。
  • 合并的时间复杂度:每次合并操作需要遍历所有的元素,时间复杂度为 ( O(n) )。

因此,归并排序的总时间复杂度是 ( O(n \log n) )。

四、归并排序的空间复杂度分析

归并排序需要额外的空间来存储合并过程中生成的临时数组。每一次合并都需要额外的空间,因此空间复杂度为 ( O(n) )。

五、归并排序的特点

  1. 稳定性:归并排序是一个稳定的排序算法,即两个相等的元素在排序后相对位置不变。
  2. 时间复杂度:在最坏、最好、平均情况下,归并排序的时间复杂度都是 ( O(n \log n) )。
  3. 空间复杂度:归并排序需要额外的 ( O(n) ) 空间来存储临时数据。
  4. 适用场景:适用于大规模数据排序,尤其是当数据量很大时,归并排序表现非常稳定。特别适用于外部排序(比如磁盘上的数据排序)。

六、归并排序的C语言实现

下面是归并排序的 代码示例:

#include <stdio.h>// 合并两个子数组 arr[left..mid] 和 arr[mid+1..right]
void merge(int arr[], int left, int mid, int right) {int n1 = mid - left + 1;  // 左子数组的长度int n2 = right - mid;     // 右子数组的长度// 创建临时数组int leftArr[n1], rightArr[n2];// 将数据复制到临时数组for (int i = 0; i < n1; i++)leftArr[i] = arr[left + i];for (int i = 0; i < n2; i++)rightArr[i] = arr[mid + 1 + i];// 合并临时数组到原始数组int i = 0, j = 0, k = left;while (i < n1 && j < n2) {if (leftArr[i] <= rightArr[j]) {arr[k] = leftArr[i];i++;} else {arr[k] = rightArr[j];j++;}k++;}// 将剩余的元素复制到原数组while (i < n1) {arr[k] = leftArr[i];i++;k++;}while (j < n2) {arr[k] = rightArr[j];j++;k++;}
}// 归并排序的递归实现
void mergeSort(int arr[], int left, int right) {if (left < right) {int mid = left + (right - left) / 2;  // 计算中间位置// 递归排序左半部分mergeSort(arr, left, mid);// 递归排序右半部分mergeSort(arr, mid + 1, right);// 合并已排序的子数组merge(arr, left, mid, right);}
}// 打印数组
void printArray(int arr[], int size) {for (int i = 0; i < size; i++) {printf("%d ", arr[i]);}printf("\n");
}int main() {int arr[] = {12, 11, 13, 5, 6, 7};  // 示例数组int arr_size = sizeof(arr) / sizeof(arr[0]);printf("原始数组: \n");printArray(arr, arr_size);mergeSort(arr, 0, arr_size - 1);  // 调用归并排序printf("排序后的数组: \n");printArray(arr, arr_size);return 0;
}

代码解释:

  1. merge函数:合并两个已经排序的子数组。arr[left..mid] 和 arr[mid+1..right],将它们合并成一个有序数组并放回原数组 arr 中。
  2. mergeSort函数:归并排序的递归实现,首先将数组分割成两个子数组,然后递归地对这两个子数组进行排序,最后合并它们。
  3. printArray函数:打印数组,用于显示排序前后的数组。

测试结果:

原始数组: 12 11 13 5 6 7 排序后的数组: 5 6 7 11 12 13

七、归并排序的改进

尽管归并排序是一种非常有效的排序算法,但它的空间复杂度 ( O(n) ) 使得它在某些情况下表现不如其他排序算法。例如,对于小规模的数据,快速排序和堆排序可能会有更好的表现。为了优化归并排序的一些空间消耗,有人提出了优化版本:

  1. 原地归并排序:将归并过程进行修改,避免使用额外的数组来存储临时数据,减少空间开销。但这会使代码变得更加复杂。

  2. 优化合并过程:对于已经部分有序的数组,优化合并过程,减少不必要的操作。

小结:

归并排序作为一种稳定的、时间复杂度为 ( O(n \log n) ) 的排序算法,适用于大规模数据的排序。尽管它需要额外的空间,但其性能非常稳定,在最坏情况下也不会退化。归并排序尤其在外部排序中有重要应用,比如对磁盘中的大量数据进行排序。

堆排序

堆排序(Heap Sort)是一种利用堆(Heap)数据结构的排序算法。它的核心思想是通过构建最大堆或最小堆来排序。堆是一种完全二叉树,满足堆的性质,即每个节点的值都大于或小于其子节点的值。堆排序通过不断地调整堆的结构来实现排序。

一、堆的定义与性质

堆是一个完全二叉树,并且满足以下两个性质之一:

  • 最大堆:对于树中的任意节点 ( i ),有 ( A[i] \geq A[2i+1] ) 和 ( A[i] \geq A[2i+2] ),即父节点的值大于或等于子节点的值。
  • 最小堆:对于树中的任意节点 ( i ),有 ( A[i] \leq A[2i+1] ) 和 ( A[i] \leq A[2i+2] ),即父节点的值小于或等于子节点的值。

二、堆排序的基本步骤

堆排序的过程可以分为两大部分:

  1. 构建堆:将无序数组构建成一个堆。堆可以是最大堆或最小堆,通常我们使用最大堆来实现升序排序。
  2. 堆调整:将堆顶元素(最大值)与堆的最后一个元素交换,然后减少堆的大小(忽略最后一个元素),重新调整堆,使其恢复堆的性质。重复这个过程直到堆的大小为1。

堆排序的时间复杂度为 ( O(n \log n) ),其中 ( n ) 是待排序数组的元素个数。

三、 堆排序的工作原理

构建最大堆:
  1. 从最后一个非叶子节点开始,逐个向上调整每个节点的位置,使其满足最大堆的性质。
  2. 调整过程涉及比较父节点与子节点的值,若父节点小于任何一个子节点,就交换它们的位置,并递归地对交换后的子树进行调整。
堆排序的具体过程:
  1. 构建最大堆:从数组的最后一个非叶子节点开始,调整堆,直到根节点。
  2. 交换根节点与最后一个节点:将堆顶元素(最大元素)与数组最后一个元素交换。
  3. 减少堆的大小:忽略最后一个元素(它已经是排好序的),调整剩下的元素,使其重新成为最大堆。
  4. 重复上述步骤:直到堆中只剩下一个元素为止。

四、 堆排序的代码实现

接下来,通过C语言实现堆排序的具体过程。我们首先需要实现最大堆的调整操作,然后通过交换堆顶元素与堆的最后一个元素来实现排序。

#include <stdio.h>// 调整堆的函数,确保根节点满足最大堆性质
void heapify(int arr[], int n, int i) {int largest = i;  // 根节点int left = 2 * i + 1;  // 左子节点int right = 2 * i + 2;  // 右子节点// 比较根节点、左子节点和右子节点,找出最大值if (left < n && arr[left] > arr[largest]) {largest = left;}if (right < n && arr[right] > arr[largest]) {largest = right;}// 如果最大值不是根节点,交换它们并递归调整if (largest != i) {int temp = arr[i];arr[i] = arr[largest];arr[largest] = temp;// 递归地调整被交换位置的子树heapify(arr, n, largest);}
}// 堆排序的主函数
void heapSort(int arr[], int n) {// 构建最大堆for (int i = n / 2 - 1; i >= 0; i--) {heapify(arr, n, i);}// 逐步将最大元素放到数组的末尾for (int i = n - 1; i >= 1; i--) {// 交换根节点(最大值)与当前最后一个元素int temp = arr[0];arr[0] = arr[i];arr[i] = temp;// 调整堆的大小heapify(arr, i, 0);}
}// 打印数组
void printArray(int arr[], int size) {for (int i = 0; i < size; i++) {printf("%d ", arr[i]);}printf("\n");
}int main() {int arr[] = {12, 11, 13, 5, 6, 7};int n = sizeof(arr) / sizeof(arr[0]);printf("原始数组:\n");printArray(arr, n);heapSort(arr, n);printf("排序后的数组:\n");printArray(arr, n);return 0;
}
代码解析:
  1. heapify函数:该函数用于调整堆的性质。它接收数组 arr,数组大小 n,和当前节点的索引 i。通过比较当前节点与左右子节点的值,决定是否交换它们,并递归地调整子树,直到整个子树满足堆的性质。

  2. heapSort函数:该函数实现堆排序的主逻辑。首先通过 heapify 构建一个最大堆,然后将堆顶的最大元素与堆的最后一个元素交换,减少堆的大小,再次调用 heapify 调整堆。重复这一过程,直到所有元素都被排好序。

  3. printArray函数:打印数组,用于查看排序前后的结果。

  4. main函数:主函数中,我们定义了一个待排序的数组,调用堆排序函数,并输出排序结果。

五、堆排序的时间复杂度分析

堆排序的时间复杂度是 ( O(n \log n) ),下面是详细分析:

  • 构建最大堆:从最后一个非叶子节点开始,调整堆。调整每个节点的时间复杂度是 ( O(\log n) ),总的构建堆的时间复杂度是 ( O(n) )。

  • 交换与堆调整:在堆排序过程中,每次将堆顶元素交换到数组末尾,然后减少堆的大小并调整堆。每次调整堆的时间复杂度是 ( O(\log n) ),总共需要进行 ( n-1 ) 次交换,因此总体时间复杂度是 ( O(n \log n) )。

综上所述,堆排序的时间复杂度为 ( O(n \log n) )。

六、 堆排序的空间复杂度

堆排序的空间复杂度是 ( O(1) ),因为它是原地排序算法,不需要额外的空间来存储数据,只需要常数空间来存储一些辅助变量。

七、堆排序的优缺点

优点:
  • 时间复杂度稳定:无论数据的初始状态如何,堆排序的时间复杂度始终是 ( O(n \log n) ),不像快速排序那样最坏情况下退化到 ( O(n^2) )。
  • 原地排序:堆排序不需要额外的存储空间,只需要常数空间。
缺点:
  • 不稳定排序:堆排序是一个不稳定的排序算法,即相等的元素可能会改变相对顺序。
  • 常数因子较大:与快速排序相比,堆排序常数因子较大,通常在实际应用中速度较慢。

八、总结

堆排序是一种基于堆数据结构的高效排序算法,它通过构建最大堆(或最小堆)来实现排序。堆排序具有 ( O(n \log n) ) 的时间复杂度,并且是原地排序算法,不需要额外的空间。然而,堆排序的主要缺点是它是一种不稳定排序,因此在一些需要稳定排序的场合,可能需要选择其他排序算法。

相关文章:

常见的排序算法(二)

归并排序 归并排序&#xff08;Merge Sort&#xff09;是一种基于分治法&#xff08;Divide and Conquer&#xff09;的排序算法。它将一个大的问题分解成小的问题&#xff0c;然后递归地解决这些小问题&#xff0c;最后合并&#xff08;merge&#xff09;得到最终的排序结果。…...

spark的RDD分区的设定规则

目录 一、第一种&#xff1a;parallelize 获取rdd时 二、第二种&#xff1a;通过外部读取数据-textFile 三、上面提到了默认分区数&#xff0c;那么默认分区是怎么计算呢&#xff1f; 一、第一种&#xff1a;parallelize 获取rdd时 没有指定&#xff1a;spark.default.paral…...

【点云网络】voxelnet 和 pointpillar

VoxelNet 和 pointpillar 这两个网络可以认为后者是前者的升级版本&#xff0c;都是采用了空间划分的方法&#xff0c; 一个是体素&#xff0c;一个是pillar, 前者是3D卷积处理中间特征&#xff0c;后者是2D卷积处理中间特征。 voxelnet voxelnet 应该是比较早的onestage的网…...

HAL库硬件IIC驱动气压传感器BMP180

环境 1、keilMDK 5.38 2、STM32CUBEMX 初始配置 默认即可。 程序 1、头文件 #ifndef __BMP_180_H #define __BMP_180_H#include "main.h"typedef struct {float fTemp; /*温度&#xff0c;摄氏度*/float fPressure; /*压力&#xff0c;pa*/float fAltitude; /*…...

探索Python音频处理的奥秘:Pydub库的魔法

文章目录 探索Python音频处理的奥秘&#xff1a;Pydub库的魔法第一部分&#xff1a;背景介绍第二部分&#xff1a;Pydub是什么&#xff1f;第三部分&#xff1a;如何安装Pydub&#xff1f;第四部分&#xff1a;Pydub的简单函数使用方法1. 打开音频文件2. 播放音频3. 导出音频文…...

LeetCode 热题100(七)【链表】(2)

目录 7.6合并两个有序链表&#xff08;简单&#xff09; 7.7两数相加&#xff08;中等&#xff09; 7.8删除链表的倒数第N个节点&#xff08;中等&#xff09; 7.9两两交换链表中的节点&#xff08;中等&#xff09; 7.10k个一组翻转链表&#xff08;困难&#xff09; 7.6…...

计算机网络 TCP/IP体系 网络层

一. 网络层的基本概念 网络层主要负责将数据从源端主机发送到目的端主机。在这一过程中&#xff0c;网络层要解决的关键问题是数据包的路由选择&#xff0c;即确定数据包通过互联网的最佳路径。 1.1 网络层的信息类型 数据包&#xff1a;这是网络层传输的主要形式&#xff0c…...

迈入国际舞台,AORO M8防爆手机获国际IECEx、欧盟ATEX防爆认证

近日&#xff0c;深圳市遨游通讯设备有限公司&#xff08;以下简称“遨游通讯”&#xff09;旗下5G防爆手机——AORO M8&#xff0c;通过了CSA集团的严格测试和评估&#xff0c;荣获国际IECEx及欧盟ATEX防爆认证证书。2024年11月5日&#xff0c;CSA集团和遨游通讯双方领导在遨游…...

实习作假:阿里健康实习做了RABC中台,还优化了短信发送流程

最近有二本同学说&#xff1a;“大拿老师&#xff0c;能帮忙看下简历吗&#xff1f;” 如果是从面试官的角度来看&#xff0c;这个同学的实习简历是很虚假的。 但是我们一直强调的是&#xff1a;校招的实习简历是不能出现明显的虚假。 首先&#xff0c;你去公司做事情&#…...

Unity中IK动画与布偶死亡动画切换的实现

在Unity游戏开发中&#xff0c;Inverse Kinematics&#xff08;IK&#xff09;是创建逼真角色动画的强大工具。同时&#xff0c;能够在适当的时候切换到布偶物理状态来实现死亡动画等效果&#xff0c;可以极大地增强游戏的视觉体验。本文将详细介绍如何在Unity中利用IK实现常规…...

java导出word文件(手绘)

文章目录 代码细节效果图参考资料 代码细节 使用的hutool的WordUtil&#xff0c;WordUtil对poi进行封装&#xff0c;但是这一块的官方封装的很少&#xff0c;很多细节都没有。代码中是常见的绘制段落&#xff0c;标题、表格等常用api Word07Writer writer WordUtil.getWriter(…...

ssm070基于SSM框架的校园代购服务订单管理系统的设计与实现+vue(论文+源码)_kaic

毕业设计 题 目&#xff1a; 校园代购服务订单管理系统 作 者&#xff1a; 学 号&#xff1a; 所属学院&#xff1a; 专业年级&#xff1a; 学校导师&#xff1a; 职 称&#xff1a; 班级导师&#xff1a; 职 称&#xff1a; 完成时间…...

Java项目实战II基于Spring Boot的秒杀系统设计与实现(开发文档+数据库+源码)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。 一、前言 在互联网电商蓬勃发展的今天&#xff0…...

FastAPI —— 请求参数验证

1.hello world 给后端船数据 hello world 接口给后端传 COVID-19 感染数据_高性能 FastAPI 框架入门精讲-慕课网 #!/usr/bin/python3 # -*- coding:utf-8 -*- # __author__ __Jack__from typing import Optionalfrom fastapi import FastAPI from pydantic import BaseModel…...

第七篇: BigQuery中的复杂SQL查询

BigQuery中的复杂SQL查询 背景与目标 在数据分析中&#xff0c;我们通常需要从多个数据源中获取信息&#xff0c;以便进行深入的分析。这时&#xff0c;BigQuery提供的JOIN、UNION和子查询等复杂SQL语句非常实用。本文将以Google BigQuery的公共数据集为例&#xff0c;介绍如何…...

【SQL实验】高级查询(难点.三)含附加数据库操作

完整代码在文章末尾【代码是自己的解答&#xff0c;并非标准答案&#xff0c;也有可能写错&#xff0c;文中可能会有不准确或待完善之处&#xff0c;恳请各位读者不吝批评指正&#xff0c;共同促进学习交流】 将素材中的“学生管理”数据库附加到SQL SERVER中&#xff0c;完成以…...

qt QFileSystemModel详解

1、概述 QFileSystemModel是Qt框架中的一个关键类&#xff0c;它继承自QAbstractItemModel&#xff0c;专门用于在Qt应用程序中展示文件系统的数据。这个模型提供了一个方便的接口&#xff0c;使得开发者可以轻松地在应用程序中集成文件和目录的树形结构&#xff0c;并通过视图…...

element plus中修改el-table的样式

文章目录 前情提要相关环境package.jsonvue代码结果 方式一直接看代码 方式二直接看代码 前情提要 因为项目中用到el-table的时候&#xff0c;需要将el-table表格的样式进行修改&#xff0c;将整个表格的背景颜色从白色变成透明&#xff0c;使得表格变得透明之后&#xff0c;展…...

深入理解封装与接口:Java程序设计的核心思想与最佳实践

目录 一、封装的优点 二、接口与默认方法 三、总结 在面向对象编程&#xff08;OOP&#xff09;中&#xff0c;封装&#xff08;Encapsulation&#xff09;是一个核心概念&#xff0c;Java对其进行了良好的支持。封装不仅有助于提高代码的安全性&#xff0c;还能够增强代码的…...

linux 下调试 mpu6050 三轴加速度

供自己备忘&#xff1b; 1. 参考资料&#xff1a; b 站视频 https://www.bilibili.com/video/BV1cL4y1x7FA/?spm_id_from333.337.search-card.all.click&vd_sourced7a07b8689c9e646f0214227c06f304c csdn 其它博客 https://blog.csdn.net/qq_65198598/article/detail…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

密码学基础——SM4算法

博客主页&#xff1a;christine-rr-CSDN博客 ​​​​专栏主页&#xff1a;密码学 &#x1f4cc; 【今日更新】&#x1f4cc; 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 ​编辑…...

职坐标物联网全栈开发全流程解析

物联网全栈开发涵盖从物理设备到上层应用的完整技术链路&#xff0c;其核心流程可归纳为四大模块&#xff1a;感知层数据采集、网络层协议交互、平台层资源管理及应用层功能实现。每个模块的技术选型与实现方式直接影响系统性能与扩展性&#xff0c;例如传感器选型需平衡精度与…...

项目进度管理软件是什么?项目进度管理软件有哪些核心功能?

无论是建筑施工、软件开发&#xff0c;还是市场营销活动&#xff0c;项目往往涉及多个团队、大量资源和严格的时间表。如果没有一个系统化的工具来跟踪和管理这些元素&#xff0c;项目很容易陷入混乱&#xff0c;导致进度延误、成本超支&#xff0c;甚至失败。 项目进度管理软…...