当前位置: 首页 > news >正文

基于Zynq FPGA的雷龙SD NAND存储芯片性能测试

文章目录

  • 前言
  • 一、SD NAND特征
    • 1.1 SD卡简介
    • 1.2 SD卡Block图
  • 二、SD卡样片
  • 三、Zynq测试平台搭建
    • 3.1 测试流程
    • 3.2 SOC搭建
  • 四、软件搭建
  • 五、测试结果
  • 六、总结

前言

随着嵌入式系统和物联网设备的快速发展,高效可靠的存储解决方案变得越来越重要。雷龙发展推出的SD NAND存储芯片,作为一种基于NAND FLASH和SD控制器集成的创新存储解决方案,以其紧凑的设计、强大的坏块管理以及优秀的纠错能力,在众多应用场景中展现出了显著的优势。为了验证这类存储芯片在实际应用中的表现,本文通过基于Xilinx Zynq 7020 FPGA平台的实验设置,对两种不同容量(4GB和32GB)的SD NAND芯片进行了详细的读写速度及稳定性测试。整个测试不仅包括了对SD卡的基本读写操作及其速度评估,还特别关注了在多次读写循环下的数据一致性和可靠性。通过这次详尽的测试,为开发者们提供有关如何有效利用SD NAND存储解决方案的第一手资料,也展示了此类存储介质在嵌入式项目中的潜在价值。

一、SD NAND特征

1.1 SD卡简介

雷龙公司推出的SD NAND存储解决方案,如CSNP4GCR01-AMW与CSNP32GCR01-AOW等型号,是专为满足现代嵌入式系统需求而设计的一种高效存储介质。这些SD NAND存储芯片结合了高性能NAND闪存与先进的SD控制器技术,能够在确保数据完整性的同时提供出色的读写速度。特别是它们具备强大的坏块管理能力和先进的纠错算法,即使在遭遇意外断电的情况下也能有效保护数据免受损失。

从技术规格来看,这些SD NAND产品兼容SD2.0标准,支持2线或4线接口配置,适用于各种不同的应用场景。它们的工作电压范围为2.7V至3.6V,这使得它们非常适合作为便携式设备或电池供电系统的理想选择。此外,这些芯片提供了两种工作模式以适应不同的性能需求:默认模式下,最大接口传输速度可达12.5MB/s;而在高速模式下,这一数值翻倍达到25MB/s,极大地提升了数据处理效率。值得注意的是,无论处于哪种模式,均需配合4条并行数据线来实现最佳性能表现。

雷龙的SD NAND存储方案还特别强调了环境适应性,其工作温度范围宽泛,从-40°C到+85°C,确保了即便是在极端条件下也能稳定运行。同时,这些芯片拥有极低的待机电流消耗(<250uA),有助于延长移动设备的电池寿命。安全性方面,除了基本的数据保护措施外,该系列产品还集成了符合SDMI最高安全标准的内容保护机制,支持通过CMD42命令实现SDNAND密码保护,增强了用户数据的安全性。另外,物理层面的写保护功能可以通过外部机械开关激活,而内部则同时提供了永久性和临时性的写保护选项,进一步增加了灵活性。

在通信协议的支持上,雷龙SD NAND芯片既支持SDIO读写也兼容SPI协议,这为开发者提供了更多样化的接入方式选择。尽管官方标称的最大读写速度可达25MB/s,但实际能达到的速度水平将取决于具体的MCU性能及所用接口类型等因素。对于那些对读写速率没有过高要求的应用场景而言,采用SPI协议往往是一个更为简便且成本效益更高的解决方案。无论是采取哪种协议,都必须严格遵循相关规范,以确保正确地建立文件系统并维持良好的数据交换质量。凭借其卓越的性能指标、丰富的功能特性以及广泛的应用潜力,雷龙SD NAND存储解决方案无疑成为了当今嵌入式领域内极具竞争力的产品之一。

1.2 SD卡Block图

image-20241107100521009

该SD卡封装为LGA-8;引脚分配与定义如下;在这里插入图片描述:

image-20241107100549001

二、SD卡样片

与样片同时寄来的还有转接板,转接板将LGA-8封装的芯片转接至SD卡封装,这样只需将转接板插入SD卡卡槽即可使用。

在这里插入图片描述:

image-20241107100621007

三、Zynq测试平台搭建

  • 测试平台为 Xilinx 的Zynq 7020 FPGA芯片;
  • 板卡:Digilent Zybo Z7
  • Vivado版本:2018.3
  • 文件系统:FATFS
  • SD卡接口:SD2.0

3.1 测试流程

本次测试主要针对4G和32G两个不同容量的SD卡,在Zynq FPGA上搭建SD卡读写回路,从而对SD卡读写速度进行测试,并检验读写一致性;

测试流程:

进入测试程序前,首先会对SD卡初始化并初始化建立FATFS文件系统,随后进入测试SD卡测试程序,在测试程序中,会写入一定大小的文件,然后对写入文件的时间进行测量,得到写入时间;然后再将写入的文件读出,测量获得读出时间,并将读出数据与写入数据相比较,检测是否读写出错。

通过写入时间、读出时间可计算得到写入速度、读出速度;将以上过程重复100次并打印报告。

image-20241107100646139

3.2 SOC搭建

硬件搭建框图如下,我们在本次系统中使用PS端的SDIO接口来驱动SD NAND芯片,并通过UART向PC打印报告;

PL端的硬件搭建也很简单,只需一个Timer定时器来做时间测量;

image-20241107100714090

我们直接使用Zybo板卡文件创建一个工程,工程会将Zybo具有的硬件资源配置好;

image-20241107100746929

首先点击setting->IP->Repository->+;添加Timer IP核的路径,Timer IP核会在工程中给出;

image-20241107100816796

点击Create Block Design创建BD工程

Create Block Design创建BD工程

在创建的过程中添加Zynq 内核;

SD NAND添加Zynq 内核

​ 由于我们使用了板卡文件,所以内核IP是配置好的,我们只需稍作修改即可,如果是其他板卡,则需要自行配置DDR等配置;

双击内核IP,点击Clock Configuration->PL Fabric Clocks,将FCLK_CLK0的时钟频率修改为100Mhz

  双击内核IP,点击Clock Configuration->PL Fabric Clocks,将FCLK_CLK0的时钟频率修改为100Mhz

添加TimerA IP;

 添加TimerA IP

依次点击上方的自动设计,完成SOC搭建;

SOC搭建

点击BD设计,并创建顶层文件

SD NAND的SOC搭建

生成比特流文件;

SD NAND的SOC搭建 比特流文件

​ 在生成比特流文件后,将其导入SDK;

点击Export->Export Hardware,导出硬件;然后点击Launch SDK打开SDK进行软件设计;

Export->Export Hardware,导出硬件Launch SDK打开SDK进行软件设计

四、软件搭建

在SDK中新建一个空白工程;

点击file -> new -> Application project;

SD NAND软件搭建

在新建的过程中创建一个main.c文件,并在里面编写测试程序如下:

在每次读写开始前,通过TimerA0_start()函数开始计时,在读写结束后可以通过TimerA0_stop()结束计时,从而测得消耗时间。

相应的Timer驱动函数在user/TimerA_user.c中定义;

#include "xparameters.h"    /* SDK generated parameters */
#include "xsdps.h"        /* SD device driver */
#include "xil_printf.h"
#include "ff.h"
#include "xil_cache.h"
#include "xplatform_info.h"
#include "time.h"
#include "../user/headfile.h"#define    PACK_LEN       32764static FIL fil;        /* File object */
static FATFS fatfs;static char FileName[32] = "Test.txt";
static char *SD_File;char DestinationAddress[PACK_LEN] ;char txt[1024];
char test_buffer[PACK_LEN];void TimerA0_init()
{TimerA_reset(TimerA0);//reset timerA deviceTimerA_Set_Clock_Division(TimerA0,100);//divide clock as 100000000/100 = 1MhzTimerA_Stop_Counter(TimerA0);//stop timerA
}void TimerA0_start()
{TimerA_SetAs_CONTINUS_Mode(TimerA0);
}void TimerA0_stop()
{TimerA_Stop_Counter(TimerA0);
}uint32 SDCard_test()
{uint8 Res;uint32 NumBytesRead;uint32 NumBytesWritten;uint32 BuffCnt;uint8 work[FF_MAX_SS];uint32 take_time=0;uint32 speed = 0;uint32 test_time = 0;uint32 w_t=0;uint32 r_t=0;float wsum = 0;float rsum = 0;TCHAR *Path = "0:/";for(int i=0;i<PACK_LEN;i++){test_buffer[i] = 'a';}Res = f_mount(&fatfs, Path, 0);if (Res != FR_OK) {return XST_FAILURE;}Res = f_mkfs(Path, FM_FAT32, 0, work, sizeof work);if (Res != FR_OK) {return XST_FAILURE;}SD_File = (char *)FileName;Res = f_open(&fil, SD_File, FA_CREATE_ALWAYS | FA_WRITE | FA_READ);if (Res) {return XST_FAILURE;}Res = f_lseek(&fil, 0);if (Res) {return XST_FAILURE;}while(1){TimerA_reset(TimerA0);TimerA0_start();Res = f_write(&fil, (const void*)test_buffer, PACK_LEN,&NumBytesWritten);TimerA0_stop();take_time = TimerA_Read_Counter_Register(TimerA0);w_t+=take_time;xil_printf("--------------------------------\n");xil_printf("take time:%d us\n",take_time);speed = PACK_LEN*(1000000/((float)(take_time)));sprintf(txt,"write speed:%.2f MB/s\n",(float)(speed)/1024/1024);wsum = wsum+speed;xil_printf(txt);xil_printf("--------------------------------\n");if (Res) {return XST_FAILURE;}Res = f_lseek(&fil, 0);if (Res) {return XST_FAILURE;}TimerA_reset(TimerA0);TimerA0_start();Res = f_read(&fil, (void*)DestinationAddress, PACK_LEN,&NumBytesRead);TimerA0_stop();take_time = TimerA_Read_Counter_Register(TimerA0);r_t+=take_time;xil_printf("--------------------------------\n");xil_printf("take time:%d us\n",take_time);speed = PACK_LEN*(1000000/((float)(take_time)));sprintf(txt,"read speed:%.2f MB/s\n",(float)(speed)/1024/1024);rsum = rsum+speed;xil_printf(txt);xil_printf("--------------------------------\n");if (Res) {return XST_FAILURE;}for(BuffCnt = 0; BuffCnt < PACK_LEN; BuffCnt++){if(test_buffer[BuffCnt] != DestinationAddress[BuffCnt]){xil_printf("%dno",BuffCnt);return XST_FAILURE;}}xil_printf("test num:%d data check right!\n",test_time+1);test_time++;if(test_time==100){sprintf(txt,"Total write: %.2f KB,Take time:%.2f ms, Write speed:%.2f MB/s\n",PACK_LEN*100/1024.0,w_t/100.0/1000.0,wsum/100/1024/1024);xil_printf(txt);sprintf(txt,"Total read: %.2f KB,Take time:%.2f ms, Read speed:%.2f MB/s\n",PACK_LEN*100/1024.0,r_t/100.0/1000.0,rsum/100/1024/1024);xil_printf(txt);Res = f_close(&fil);if (Res) {return XST_FAILURE;}return 0;}}}int main(void)
{TimerA0_init();SDCard_test();xil_printf("finish");return 0;
}

五、测试结果

经测试,两种型号的芯片读写速度如下图表所示。

其SD NAND的读写速度随着读写数据量的增加而增加,并且读速率大于写速率,这符合SD卡的特性;

对比两种型号SD NAND芯片,发现CSNP32GCR01-AOW型号具有更高的读写速度;

SD NAND的读写速度数据

SD NAND的写入速度数据SD NAND的读出速度数据

六、总结

在这篇文章中,介绍了对雷龙公司生产的两种型号的SD NAND存储芯片(CSNP4GCR01-AMW与CSNP32GCR01-AOW)进行的性能测试。这些SD NAND芯片基于NAND FLASH和SD控制器实现,提供了强大的坏块管理、纠错功能以及在意外断电情况下的数据安全保障。测试过程中,使用了Xilinx Zynq 7020 FPGA作为测试平台,通过对这两种不同容量(4GB和32GB)的SD NAND芯片进行读写速度测试,发现随着读写数据量的增加,读写速度也随之提高,并且读取速度普遍高于写入速度,这与SD卡的一般特性相符。值得注意的是,CSNP32GCR01-AOW型号表现出更高的读写速度。

测试结果显示,这两种型号的SD NAND芯片在正常读写操作下的表现令人满意,而且价格合理。此外,LGA-8封装形式使得这种存储解决方案非常适合无卡槽的嵌入式开发板设计,有助于简化硬件设计并减少所需空间。然而,在尝试探索这些芯片在信息安全领域的应用时遇到了限制,因为发现芯片内置了复位或初始化机制,这阻止了研究人员提取上电时可能存在的不确定性值,因此无法进一步研究SD NAND的物理不可克隆特性。

雷龙的SD NAND存储芯片展示出了良好的性能与性价比,特别是在嵌入式开发领域中展现了其独特优势。对于那些寻求可靠且紧凑型存储解决方案的开发者而言,这是一个值得考虑的选择。

贴上测试工程的链接: https://gitee.com/gewenjie_host/sd_-nand_-zynq700_test

免费申请 SD NAND 样品,可以去官网:http://www.longsto.com/

相关文章:

基于Zynq FPGA的雷龙SD NAND存储芯片性能测试

文章目录 前言一、SD NAND特征1.1 SD卡简介1.2 SD卡Block图 二、SD卡样片三、Zynq测试平台搭建3.1 测试流程3.2 SOC搭建 四、软件搭建五、测试结果六、总结 前言 随着嵌入式系统和物联网设备的快速发展&#xff0c;高效可靠的存储解决方案变得越来越重要。雷龙发展推出的SD NA…...

【功能介绍】信创终端系统上各WPS版本的授权差异

原文链接&#xff1a;【功能介绍】信创终端系统上各WPS版本的授权差异 Hello&#xff0c;大家好啊&#xff01;今天给大家带来一篇关于信创终端操作系统上WPS Office各版本&#xff08;不包括政务版、企业版等&#xff09;之间的差异的文章。WPS Office作为国内广泛使用的办公软…...

Neo4j 和 Python 初学者指南:如何使用可选关系匹配优化 Cypher 查询

Neo4j 和 Python 初学者指南&#xff1a;如何使用可选关系匹配优化 Cypher 查询 查询需求分析目标查询结构 编写 Cypher 查询查询解析OPTIONAL MATCH 和 COALESCE 的作用 在 Python 中使用 Neo4j 驱动执行查询使用 neo4j 驱动的 Python 示例代码代码解析示例输出 总结 在使用 N…...

性能测试|docker容器下搭建JMeter+Grafana+Influxdb监控可视化平台

前言 在当前激烈的市场竞争中&#xff0c;创新和效率成为企业发展的核心要素之一。在这种背景下&#xff0c;如何保证产品和服务的稳定性、可靠性以及高效性就显得尤为重要。 而在软件开发过程中&#xff0c;性能测试是一项不可或缺的环节&#xff0c;它可以有效的评估一个系…...

(vue3)在Pinia Store中正确使用Vue I18n

引言 在Vue 3和Pinia的开发过程中&#xff0c;我们经常需要在store中使用国际化&#xff08;i18n&#xff09;功能。然而&#xff0c;这个看似简单的任务可能会导致一些棘手的问题。本文将深入探讨在Pinia store中使用Vue I18n时可能遇到的挑战&#xff0c;解释问题的根源&…...

如何开发查找附近地点的微信小程序

我开发的是找附近卫生间的小程序。 在现代城市生活中&#xff0c;找到一个干净、方便的公共卫生间有时可能是一个挑战。为了解决这个问题&#xff0c;我们可以开发一款微信小程序&#xff0c;帮助用户快速找到附近的卫生间。本文将介绍如何开发这样一款小程序&#xff0c;包…...

三格电子——电梯监测状态项目

方案介绍...

C#-运算符重载

关键词&#xff1a;operator 语法&#xff1a; public static void operator 运算符(参数列表){} 作用&#xff1a;让自定义类或结构体对象&#xff0c;可以使用运算符进行运算 注意&#xff1a; 参数的数量&#xff1a;与所重载的运算符的运算规则有关。如加法只能有2个参数…...

6.qsqlquerymodel源码分析

目录 继承关系入口浅析qsqlquery刷新数据 扩展列或者移除列以及取别名读取数据与增减行读取数据 下一章节&#xff1a;如何使用qsqlquerymodel 与 qtableview实现自定义表格 继承关系 qsqlquerymodel 继承与qabstracttablemodel 入口 负责填充数据 void QSqlQueryModel::s…...

【人工智能】ChatGPT多模型感知态识别

目录 ChatGPT辅助细化知识增强&#xff01;一、研究背景二、模型结构和代码任务流程一&#xff1a;启发式生成 三、数据集介绍三、性能展示实现过程运行过程训练过程 ChatGPT辅助细化知识增强&#xff01; 多模态命名实体识别&#xff08;MNER&#xff09;最近引起了广泛关注。…...

2.ARM_ARM是什么

CPU工作原理 CPU与内存中的内容&#xff1a; 内存中存放了指令&#xff0c;每一个指令存放的地址不一样&#xff0c;所需的内存空间也不一样。 运算器能够进行算数运算和逻辑运算&#xff0c;这些运算在CPU中都是以运算电路的形式存在&#xff0c;一个运算功能对应一种运算电…...

深入学习指针(5)!!!!!!!!!!!!!!!

文章目录 1.回调函数是什么&#xff1f;2.qsort使用举例2.1使用qsort函数排序整形数据2.2使用sqort排序结构数据 3.qsort函数的模拟实现 1.回调函数是什么&#xff1f; 回调函数就是⼀个通过函数指针调⽤的函数。 如果你把函数的指针&#xff08;地址&#xff09;作为参数传递…...

离散无记忆信道

目录 离散无记忆信道输入概率输出概率联合分布概率信道逆向概率一些记号示例1示例2 离散无记忆信道 离散&#xff1a;输入输出字母表都是有限的 无记忆&#xff1a;输出字符 d i d_i di​ 被接收到的概率只依赖于当前的输入 c i c_i ci​, 而与前面的输入无关。 一个离散无记…...

【STM32】项目实战——OV7725/OV2604摄像头颜色识别检测(开源)

本篇文章分享关于如何使用STM32单片机对彩色摄像头&#xff08;OV7725/OV2604&#xff09;采集的图像数据进行分析处理&#xff0c;最后实现颜色的识别和检测。 目录 一、什么是颜色识别 1、图像采集识别的一些基本概念 1. 像素&#xff08;Pixel&#xff09; 2. 分辨率&am…...

《AI产品经理手册》——解锁AI时代的商业密钥

在当今这个日新月异的AI时代&#xff0c;每一位产品经理都面临着前所未有的挑战与机遇&#xff0c;唯有紧跟时代潮流&#xff0c;深入掌握AI技术的精髓&#xff0c;才能在激烈的市场竞争中独占鳌头。《AI产品经理手册》正是这样一部为AI产品经理量身定制的实战宝典&#xff0c;…...

ArcGIS 地理信息系统 任意文件读取漏洞复现

0x01 产品简介 ArcGIS是由美国Esri公司研发的地理信息系统(GIS)软件,它整合了数据库、软件工程、人工智能、网络技术、云计算等主流的IT技术,旨在为用户提供一套完整的、开放的企业级GIS解决方案,它包含了一套带有用户界面组件的Windows桌面应用。可以实现从简单到复杂的…...

11.07学习

一、三中代码解决鸡兔同笼问题 1.直接解方程 #include <stdio.h> int main() { int heads, feet, chickens, rabbits; printf("请输入总头数&#xff1a;"); scanf("%d", &heads); printf("请输入总脚数&#xff1a;"); scanf(…...

【JavaEE】常见锁策略、CAS

目录 常见的锁策略 乐观锁 vs 悲观锁 重量级锁 vs 轻量级锁 自锁锁和挂起等待锁 读写锁 可重入锁 vs 不可重入锁 公平锁 vs 非公平锁 CAS ABA问题 synchronized几个重要的机制 1、锁升级 2、锁消除 3、锁粗化 常见的锁策略 乐观锁 vs 悲观锁 乐观锁和悲观锁是锁的…...

Logstash 安装与部署(无坑版)

下载 版本对照关系&#xff1a;ElasticSearch 7.9.2 和 Logstash 7.9.2 &#xff1b; 官方下载地址 选择ElasticSearch版本一致的Logstash版本 https://www.elastic.co/cn/downloads/logstash 下载链接&#xff1a;https://artifacts.elastic.co/downloads/logstash/logst…...

鸿蒙开发:ArkUI Toggle 组件

ArkUI提供了一套完整的UI开发工具集&#xff0c;帮助开发者高效完成页面的开发。它融合了语言、编译器、图形构建等关键的应用UI开发底座&#xff0c;为应用的UI开发提供了完整的基础设施&#xff0c;包括简洁的UI语法、丰富的UI功能以及实时界面预览工具等&#xff0c;可以支持…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...