离散无记忆信道
目录
- 离散无记忆信道
- 输入概率
- 输出概率
- 联合分布概率
- 信道逆向概率
- 一些记号
- 示例1
- 示例2
离散无记忆信道
离散:输入输出字母表都是有限的
无记忆:输出字符 d i d_i di 被接收到的概率只依赖于当前的输入 c i c_i ci, 而与前面的输入无关。
一个离散无记忆信道由输入字母表 S = { x 1 \mathcal{S} = \{ x_1 S={x1, ⋯ \cdots ⋯, x s } x_s\} xs}和输出字母表 Q = { y 1 \mathcal{Q} = \{ y_1 Q={y1, ⋯ \cdots ⋯, y t } y_t\} yt} 以及一系列信道概率 p ( y j ( y_j (yj| x i ) x_i) xi) 组成,其中信道概率满足条件:对任意 1 ≤ 1\leq 1≤i ≤ \leq ≤s,
∑ j = 1 t p ( y j ∣ x i ) = 1. \sum_{\mathrm{j=1}}^\mathrm{t}\mathrm{p(y_j|x_i)=1.} j=1∑tp(yj∣xi)=1.
直观地,可以把 p ( y j ( y_{j} (yj| x i x_{i} xi) 当 成 通 过 该 信 道 发 送 x i x_{i} xi 时,接收到 y j _\mathrm{j~} j 的概
率。
上述定义中离散的意思是指输入输出字母表都是有限的,而无记忆的意思是指输出字符 d i d_i di 被接收到的概率只依赖于当前的输入 c i c_i ci, 而与前面的输入无关。
还要注意到离散无记忆信道定义中的时间位置的独立性,也就是通过信道传输一个字符发生错误的概率跟发送的时间以及该字符在码字中的位置无关。
进一步,如果 ( c 1 ( c_1 (c1, ⋯ \cdots ⋯, c n c_n cn) 和 ( d 1 ( d_1 (d1, ⋯ \cdots ⋯, d n d_n dn) 分别是字母表 S S S和字母表 Q Q Q 上的长度为 n 的码字,那么通过信道发送 c = ( c 1 , ⋯ , c n ) =(\mathfrak{c}_1,\cdots,\mathfrak{c}_{\mathfrak{n}}) =(c1,⋯,cn)时,接收到d = ( d 1 , ⋯ , d n ) =(\mathrm{d}_1,\cdots,\mathrm{d}_{\mathrm{n}}) =(d1,⋯,dn)的概率为
p ( d ∣ c ) = ∏ i = 1 n p ( d i ∣ c i ) . \mathrm{p(d|c)=\prod_{i=1}^np(d_i|c_i).} p(d∣c)=i=1∏np(di∣ci).
输入概率
因为信道的输入本质上具有概率的特性,所以可以把信道的输入当成随机变量 X 的值,并且其输入概率分布由下式定义
P ( X = x i ) = p ( x i ) . \mathrm{P(X=x_i)=p(x_i).} P(X=xi)=p(xi).
输出概率
每个输入 X 会引发一个输出 Y, 输出概率分布由输入分布和信道概率所确定,即:
P ( Y = y j ) = ∑ i = 1 s p ( y j ∣ x i ) p ( x i ) . \mathrm{P(Y=y_j)=\sum_{i=1}^sp(y_j|x_i)p(x_i).} P(Y=yj)=i=1∑sp(yj∣xi)p(xi).
联合分布概率
联合分布律由下式给出:
P ( X = x i , Y = y j ) = p ( y j ∣ x i ) p ( x i ) . \mathrm{P(X=x_i,Y=y_j)=p(y_j|x_i)p(x_i).} P(X=xi,Y=yj)=p(yj∣xi)p(xi).
信道逆向概率
信道逆向概率定义为
P ( X = x i ∣ Y = y j ) = P ( X = x i , Y = y j ) P ( Y = y j ) . \mathrm{P(X=x_i|Y=y_j)=\frac{P(X=x_i,Y=y_j)}{P(Y=y_j)}.} P(X=xi∣Y=yj)=P(Y=yj)P(X=xi,Y=yj).
一些记号
为方便起见,会使用一些记号:
p ( x i ) = P ( X = x i ) \mathrm{p(x_i)=P(X=x_i)} p(xi)=P(X=xi)
p ( y j ) = P ( Y = y j ) \mathrm{p(y_j)=P(Y=y_j)} p(yj)=P(Y=yj)
p ( x i , y j ) = P ( X = x i , Y = y j ) \mathrm{p(x_i,y_j)=P(X=x_i,Y=y_j)} p(xi,yj)=P(X=xi,Y=yj)
p ( x i ∣ y j ) = P ( X = x i ∣ Y = y j ) \mathrm{p(x_i|y_j)=P(X=x_i|Y=y_j)} p(xi∣yj)=P(X=xi∣Y=yj)
p ( y j ∣ x i ) = P ( Y = y j ∣ X = x i ) \mathrm{p(y_j|x_i)=P(Y=y_j|X=x_i)} p(yj∣xi)=P(Y=yj∣X=xi)
示例1
一个重要的离散无记忆信道是前文用过的二元对称信道,其输入输
出字母表为{0}1}。信道概率为
P ( 0 ∣ 1 ) = P ( 1 ∣ 0 ) = p P ( 0 ∣ 0 ) = P ( 1 ∣ 1 ) = 1 − p \begin{aligned}&P\left(0\mid1\right)=P\left(1\mid0\right)=p\\&P\left(0\mid0\right)=P\left(1\mid1\right)=1-p\end{aligned} P(0∣1)=P(1∣0)=pP(0∣0)=P(1∣1)=1−p也就是说,交叉概率(每个比特传输的错误概率)为 p p p。
示例2
二元擦除信道的信道概率为
P ( 1 ∣ 1 ) = r , P ( ? ∣ 1 ) = s , P ( 0 ∣ 1 ) = 1 − r − s P ( 0 ∣ 0 ) = p , P ( ? ∣ 0 ) = q , P ( 1 ∣ 0 ) = 1 − p − q P(1\mid1)=r\:,\:P(?\mid1)=s\:,\:P(0\mid1)=1-r-s\\P(0\mid0)=p\:,\:P(?\mid0)=q\:,\:P(1\mid0)=1-p-q P(1∣1)=r,P(?∣1)=s,P(0∣1)=1−r−sP(0∣0)=p,P(?∣0)=q,P(1∣0)=1−p−q这里的“?”可以解释为输人丢失或者擦除。、
相关文章:
离散无记忆信道
目录 离散无记忆信道输入概率输出概率联合分布概率信道逆向概率一些记号示例1示例2 离散无记忆信道 离散:输入输出字母表都是有限的 无记忆:输出字符 d i d_i di 被接收到的概率只依赖于当前的输入 c i c_i ci, 而与前面的输入无关。 一个离散无记…...

【STM32】项目实战——OV7725/OV2604摄像头颜色识别检测(开源)
本篇文章分享关于如何使用STM32单片机对彩色摄像头(OV7725/OV2604)采集的图像数据进行分析处理,最后实现颜色的识别和检测。 目录 一、什么是颜色识别 1、图像采集识别的一些基本概念 1. 像素(Pixel) 2. 分辨率&am…...

《AI产品经理手册》——解锁AI时代的商业密钥
在当今这个日新月异的AI时代,每一位产品经理都面临着前所未有的挑战与机遇,唯有紧跟时代潮流,深入掌握AI技术的精髓,才能在激烈的市场竞争中独占鳌头。《AI产品经理手册》正是这样一部为AI产品经理量身定制的实战宝典,…...

ArcGIS 地理信息系统 任意文件读取漏洞复现
0x01 产品简介 ArcGIS是由美国Esri公司研发的地理信息系统(GIS)软件,它整合了数据库、软件工程、人工智能、网络技术、云计算等主流的IT技术,旨在为用户提供一套完整的、开放的企业级GIS解决方案,它包含了一套带有用户界面组件的Windows桌面应用。可以实现从简单到复杂的…...
11.07学习
一、三中代码解决鸡兔同笼问题 1.直接解方程 #include <stdio.h> int main() { int heads, feet, chickens, rabbits; printf("请输入总头数:"); scanf("%d", &heads); printf("请输入总脚数:"); scanf(…...
【JavaEE】常见锁策略、CAS
目录 常见的锁策略 乐观锁 vs 悲观锁 重量级锁 vs 轻量级锁 自锁锁和挂起等待锁 读写锁 可重入锁 vs 不可重入锁 公平锁 vs 非公平锁 CAS ABA问题 synchronized几个重要的机制 1、锁升级 2、锁消除 3、锁粗化 常见的锁策略 乐观锁 vs 悲观锁 乐观锁和悲观锁是锁的…...

Logstash 安装与部署(无坑版)
下载 版本对照关系:ElasticSearch 7.9.2 和 Logstash 7.9.2 ; 官方下载地址 选择ElasticSearch版本一致的Logstash版本 https://www.elastic.co/cn/downloads/logstash 下载链接:https://artifacts.elastic.co/downloads/logstash/logst…...

鸿蒙开发:ArkUI Toggle 组件
ArkUI提供了一套完整的UI开发工具集,帮助开发者高效完成页面的开发。它融合了语言、编译器、图形构建等关键的应用UI开发底座,为应用的UI开发提供了完整的基础设施,包括简洁的UI语法、丰富的UI功能以及实时界面预览工具等,可以支持…...

使用Matlab神经网络工具箱
综述 在大数据和人工智能时代,神经网络是一种最为常见的数据分析和拟合工具。本报告以常用分析软件Matlab为例,介绍其中神经网络工具箱使用方法。 Step 1: 打开matlab 安装matlab 2018以上版本后,双击图标打开。 Step 2: 打开神经网络拟合…...
【面试题】Hive 查询:如何查找用户连续三天登录的记录
1. 需求概述 在分析用户行为时,查询用户的连续登录数据是一个常见需求。例如,我们需要找出每个用户连续三天登录的记录。给定一个包含用户登录记录的表,我们需要对这些数据进行处理,提取出用户连续三天登录的日期。 2. 问题说明…...

高活跃社区 Doge 与零知识证明的强强联手,QED 重塑可扩展性
在 Web3 的广阔生态中,Doge 无疑是最具标志性和趣味性的项目之一。作为一种起源于网络文化的符号,Doge 从最初的互联网玩笑发展为如今备受全球关注的去中心化资产,依靠其独特的魅力和广泛的用户基础,构建了一个充满活力的社区。 …...

qt QAbstractTableModel详解
1、概述 QAbstractTableModel 是 Qt 框架中的一个类,用于在 Qt 应用程序中实现自定义的表格数据模型。它是 Qt 中的一个抽象基类,提供了创建和操作表格数据所需的接口。QAbstractTableModel 为模型提供了一个标准接口,这些模型将其数据表示为…...
掌握 Navicat 数据库结构设计 | 提升工作效率的秘诀
近期,我们介绍了 Navicat 17 的一系列的新特性,包括:兼容更多数据库、全新的模型设计、可视化 BI、智能数据分析、可视化查询解释、高质量数据字典、增强用户体验、扩展 MongoDB 功能、轻松固定查询结果、便捷 URI、支持更多平台等。今天&…...

Ollama AI 框架缺陷可能导致 DoS、模型盗窃和中毒
近日,东方联盟网络安全研究人员披露了 Ollama 人工智能 (AI) 框架中的六个安全漏洞,恶意行为者可能会利用这些漏洞执行各种操作,包括拒绝服务、模型中毒和模型盗窃。 知名网络安全专家、东方联盟创始人郭盛华表示:“总的来说&…...

vue 3:监听器
目录 1. 基本概念 2. 侦听数据源类型 1. 监听getter函数 2. 监听 ref 或 reactive 的引用 3. 多个来源组成的数组 4. 避免直接传递值!!! 3. 深层侦听器 4. 立即回调的侦听器 5. 一次性侦听器 6. watchEffect() 7. 暂停、恢复和停止…...

Java学习路线:Maven(四)Maven常用命令
在IDEA的Maven模块中,可以看到每个项目都有一个生命周期 这些生命周期实际上是Maven的一些插件,每个插件都有各自的功能,而双击这些插件就可以执行命令 这些命令的功能如下: clean:清除整个 target文件夹,…...

服务器数据恢复—分区结构被破坏的reiserfs文件系统数据恢复案例
服务器数据恢复环境: 一台服务器中有一组由4块SAS硬盘组建的RAID5阵列,上层安装linux操作系统统。分区结构:boot分区LVM卷swap分区(按照顺序),LVM卷中划分了一个reiserfs文件系统作为根分区。 服务器故障…...
lua入门教程:type函数
在Lua中,type 函数是一个内置函数,用于返回给定值的类型。Lua 支持多种数据类型,包括 nil(空值)、boolean(布尔值)、number(数字)、string(字符串)…...
Java图片转word
该方法可以控制一页是否只显示存放一张图片 第一步 <dependency><groupId>org.apache.poi</groupId><artifactId>poi-ooxml</artifactId><version>5.2.3</version></dependency><dependency><groupId>org.apache…...

立体视觉的核心技术:视差计算与图像校正详解
立体视觉的核心技术:视差计算与图像校正详解 在立体视觉中,通过双目相机(即左右两台相机)的不同视角捕获的图像,结合几何关系,我们可以推算出场景中物体的深度。本文将深入讲解如何基于视差(di…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...

12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...

网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...
区块链技术概述
区块链技术是一种去中心化、分布式账本技术,通过密码学、共识机制和智能合约等核心组件,实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点:数据存储在网络中的多个节点(计算机),而非…...