使用Matlab神经网络工具箱
综述
在大数据和人工智能时代,神经网络是一种最为常见的数据分析和拟合工具。本报告以常用分析软件Matlab为例,介绍其中神经网络工具箱使用方法。
Step 1: 打开matlab
安装matlab 2018以上版本后,双击图标打开。
Step 2: 打开神经网络拟合应用
1、在APP(应用)页面,展开,找到Neural Net Fitting图标,单击打开。

2、打开后页面如下图所示

点击“Next”
Step 3: 选择训练数据
1、本实验先利用matlab内置的已有算例数据集进行分析,如下图所示,点击“Load Example Data Set”

2、选择Engine数据集后,再点击Import导入。

3、点击蓝色字体“engine dataset”,查看这个数据集的介绍


可以进一步点击上图中的链接,查看更多内容。
4、选择自变量“输入”(input)、因变量“目标”(target)

5、告诉matlab样本是行还是列。这里选择columns,即有1199个样本。(样本一般比较多,element(变量)一般比较少)。

点击next
6、划分训练集、测试集和验证集。这里默认,不需要改。

点击next。
Step 4: 配置神经网络
1、设置隐含层数目,这里默认10,不需要改变。

点击next。
有同学好奇这里要怎么设置。根据kolmogorov定理,可以按照如下方法确定。

Step 5: 开始训练神经网络
1、开始训练,点击Train

得到如下训练结果

Step 6: 分析拟合结果
1、查看拟合效果。


误差的众数在0附近,比较合理。


预测值(output)和真实值(target)的分布都在对角线上,说明拟合效果很好。

MSE和R值都挺好的,也说明这个模型拟合得不错。
点击next,进行下一步。
Step 7: 导出结果
1、出现下图,我们暂时不需要评估模型,所以继续按Next

到达Deploy solution的页面,如下图所示,这时候,我们点“MATLAB Function”

点击后,发现matlab主界面的工作区中,出现了我们刚刚跑模型的数据。

在matlab主界面的编辑器,出现了新建页面,且里面是刚刚所训练模型的参数,将其保存为自己喜欢的名字(例如下图中“myNeuralNetworkFunctionEngine”),将其保存在默认路径。

上图所示的数字,即为神经网络每一个输入的权重系数。
Step 8: 应用模型
1、新建一个脚本,我们命名为“EnginePre”,保留在默认路径。敲入如图所示的代码。

点击运行后,可以点击工作区中的“Y_true”和“Y_pre”来感性对比以下真值和预测值的差别。


由于本例中的输出有两个,所以我们也分别对其计算RMSE,得到的值如下图所示。

相关文章:
使用Matlab神经网络工具箱
综述 在大数据和人工智能时代,神经网络是一种最为常见的数据分析和拟合工具。本报告以常用分析软件Matlab为例,介绍其中神经网络工具箱使用方法。 Step 1: 打开matlab 安装matlab 2018以上版本后,双击图标打开。 Step 2: 打开神经网络拟合…...
【面试题】Hive 查询:如何查找用户连续三天登录的记录
1. 需求概述 在分析用户行为时,查询用户的连续登录数据是一个常见需求。例如,我们需要找出每个用户连续三天登录的记录。给定一个包含用户登录记录的表,我们需要对这些数据进行处理,提取出用户连续三天登录的日期。 2. 问题说明…...
高活跃社区 Doge 与零知识证明的强强联手,QED 重塑可扩展性
在 Web3 的广阔生态中,Doge 无疑是最具标志性和趣味性的项目之一。作为一种起源于网络文化的符号,Doge 从最初的互联网玩笑发展为如今备受全球关注的去中心化资产,依靠其独特的魅力和广泛的用户基础,构建了一个充满活力的社区。 …...
qt QAbstractTableModel详解
1、概述 QAbstractTableModel 是 Qt 框架中的一个类,用于在 Qt 应用程序中实现自定义的表格数据模型。它是 Qt 中的一个抽象基类,提供了创建和操作表格数据所需的接口。QAbstractTableModel 为模型提供了一个标准接口,这些模型将其数据表示为…...
掌握 Navicat 数据库结构设计 | 提升工作效率的秘诀
近期,我们介绍了 Navicat 17 的一系列的新特性,包括:兼容更多数据库、全新的模型设计、可视化 BI、智能数据分析、可视化查询解释、高质量数据字典、增强用户体验、扩展 MongoDB 功能、轻松固定查询结果、便捷 URI、支持更多平台等。今天&…...
Ollama AI 框架缺陷可能导致 DoS、模型盗窃和中毒
近日,东方联盟网络安全研究人员披露了 Ollama 人工智能 (AI) 框架中的六个安全漏洞,恶意行为者可能会利用这些漏洞执行各种操作,包括拒绝服务、模型中毒和模型盗窃。 知名网络安全专家、东方联盟创始人郭盛华表示:“总的来说&…...
vue 3:监听器
目录 1. 基本概念 2. 侦听数据源类型 1. 监听getter函数 2. 监听 ref 或 reactive 的引用 3. 多个来源组成的数组 4. 避免直接传递值!!! 3. 深层侦听器 4. 立即回调的侦听器 5. 一次性侦听器 6. watchEffect() 7. 暂停、恢复和停止…...
Java学习路线:Maven(四)Maven常用命令
在IDEA的Maven模块中,可以看到每个项目都有一个生命周期 这些生命周期实际上是Maven的一些插件,每个插件都有各自的功能,而双击这些插件就可以执行命令 这些命令的功能如下: clean:清除整个 target文件夹,…...
服务器数据恢复—分区结构被破坏的reiserfs文件系统数据恢复案例
服务器数据恢复环境: 一台服务器中有一组由4块SAS硬盘组建的RAID5阵列,上层安装linux操作系统统。分区结构:boot分区LVM卷swap分区(按照顺序),LVM卷中划分了一个reiserfs文件系统作为根分区。 服务器故障…...
lua入门教程:type函数
在Lua中,type 函数是一个内置函数,用于返回给定值的类型。Lua 支持多种数据类型,包括 nil(空值)、boolean(布尔值)、number(数字)、string(字符串)…...
Java图片转word
该方法可以控制一页是否只显示存放一张图片 第一步 <dependency><groupId>org.apache.poi</groupId><artifactId>poi-ooxml</artifactId><version>5.2.3</version></dependency><dependency><groupId>org.apache…...
立体视觉的核心技术:视差计算与图像校正详解
立体视觉的核心技术:视差计算与图像校正详解 在立体视觉中,通过双目相机(即左右两台相机)的不同视角捕获的图像,结合几何关系,我们可以推算出场景中物体的深度。本文将深入讲解如何基于视差(di…...
PaddleNLP的FAQ问答机器人
项目源码获取方式见文章末尾! 600多个深度学习项目资料,快来加入社群一起学习吧。 《------往期经典推荐------》 项目名称 1.【DDRNet模型创新实现人像分割】 2.【卫星图像道路检测DeepLabV3Plus模型】 3.【GAN模型实现二次元头像生成】 4.【CNN模型实…...
2024年12月中国多场国际学术会议,EI检索录用!
2024年12月,多场国际学术会议将在中国多地召开,涵盖AI、机器人、大数据、网络安全、传感制造、环境工程、物联网等领域,促进学术交流,录用论文将EI检索,诚邀国内外专家参会。 第三届人工智能、人机交互和机器人国际学…...
日语学习的难易程度
日语学习的难易程度是一个相对主观的问题,它受到多种因素的影响,包括个人的语言学习能力、学习方法、学习时间、学习资源的可获得性以及个人对日语文化的兴趣和投入程度等。以下是对日语学习难易程度的一些分析: 优点与易学之处 文字系统&am…...
java-web-web后端知识小结
spring框架三大核心: IOC--控制反转 DI---依赖注入 AOP--面向切面编程 web开发技术小结 1.过滤器,JWT令牌 2.三层架构 IOC, DI AOP, 全局异常处理, 事务管理 mybatis 3.数据操作与存储 mysql 阿里云OSS(云存储) 各个技术的归属: 1.过滤器, cookie,session--javaWeb 2.JWT, 阿里…...
常见的排序算法(二)
归并排序 归并排序(Merge Sort)是一种基于分治法(Divide and Conquer)的排序算法。它将一个大的问题分解成小的问题,然后递归地解决这些小问题,最后合并(merge)得到最终的排序结果。…...
spark的RDD分区的设定规则
目录 一、第一种:parallelize 获取rdd时 二、第二种:通过外部读取数据-textFile 三、上面提到了默认分区数,那么默认分区是怎么计算呢? 一、第一种:parallelize 获取rdd时 没有指定:spark.default.paral…...
【点云网络】voxelnet 和 pointpillar
VoxelNet 和 pointpillar 这两个网络可以认为后者是前者的升级版本,都是采用了空间划分的方法, 一个是体素,一个是pillar, 前者是3D卷积处理中间特征,后者是2D卷积处理中间特征。 voxelnet voxelnet 应该是比较早的onestage的网…...
HAL库硬件IIC驱动气压传感器BMP180
环境 1、keilMDK 5.38 2、STM32CUBEMX 初始配置 默认即可。 程序 1、头文件 #ifndef __BMP_180_H #define __BMP_180_H#include "main.h"typedef struct {float fTemp; /*温度,摄氏度*/float fPressure; /*压力,pa*/float fAltitude; /*…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...
区块链技术概述
区块链技术是一种去中心化、分布式账本技术,通过密码学、共识机制和智能合约等核心组件,实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点:数据存储在网络中的多个节点(计算机),而非…...
