当前位置: 首页 > news >正文

使用Matlab神经网络工具箱

综述

在大数据和人工智能时代,神经网络是一种最为常见的数据分析和拟合工具。本报告以常用分析软件Matlab为例,介绍其中神经网络工具箱使用方法。

Step 1: 打开matlab

安装matlab 2018以上版本后,双击图标打开。

Step 2: 打开神经网络拟合应用

1、在APP(应用)页面,展开,找到Neural Net Fitting图标,单击打开。

2、打开后页面如下图所示

点击“Next”

Step 3: 选择训练数据

1、本实验先利用matlab内置的已有算例数据集进行分析,如下图所示,点击“Load Example Data Set”

2、选择Engine数据集后,再点击Import导入。

3、点击蓝色字体“engine dataset”,查看这个数据集的介绍

可以进一步点击上图中的链接,查看更多内容。

4、选择自变量“输入”(input)、因变量“目标”(target)

5、告诉matlab样本是行还是列。这里选择columns,即有1199个样本。(样本一般比较多,element(变量)一般比较少)。

点击next

6、划分训练集、测试集和验证集。这里默认,不需要改。

点击next。

Step 4: 配置神经网络

1、设置隐含层数目,这里默认10,不需要改变。

点击next。

有同学好奇这里要怎么设置。根据kolmogorov定理,可以按照如下方法确定。

Step 5: 开始训练神经网络

1、开始训练,点击Train

得到如下训练结果

Step 6: 分析拟合结果

1、查看拟合效果。

误差的众数在0附近,比较合理。

预测值(output)和真实值(target)的分布都在对角线上,说明拟合效果很好。

MSE和R值都挺好的,也说明这个模型拟合得不错。

点击next,进行下一步。

Step 7: 导出结果

1、出现下图,我们暂时不需要评估模型,所以继续按Next

到达Deploy solution的页面,如下图所示,这时候,我们点“MATLAB Function”

点击后,发现matlab主界面的工作区中,出现了我们刚刚跑模型的数据。

在matlab主界面的编辑器,出现了新建页面,且里面是刚刚所训练模型的参数,将其保存为自己喜欢的名字(例如下图中“myNeuralNetworkFunctionEngine”),将其保存在默认路径。

上图所示的数字,即为神经网络每一个输入的权重系数。

Step 8: 应用模型

1、新建一个脚本,我们命名为“EnginePre”,保留在默认路径。敲入如图所示的代码。

点击运行后,可以点击工作区中的“Y_true”和“Y_pre”来感性对比以下真值和预测值的差别。

由于本例中的输出有两个,所以我们也分别对其计算RMSE,得到的值如下图所示。

相关文章:

使用Matlab神经网络工具箱

综述 在大数据和人工智能时代,神经网络是一种最为常见的数据分析和拟合工具。本报告以常用分析软件Matlab为例,介绍其中神经网络工具箱使用方法。 Step 1: 打开matlab 安装matlab 2018以上版本后,双击图标打开。 Step 2: 打开神经网络拟合…...

【面试题】Hive 查询:如何查找用户连续三天登录的记录

1. 需求概述 在分析用户行为时,查询用户的连续登录数据是一个常见需求。例如,我们需要找出每个用户连续三天登录的记录。给定一个包含用户登录记录的表,我们需要对这些数据进行处理,提取出用户连续三天登录的日期。 2. 问题说明…...

高活跃社区 Doge 与零知识证明的强强联手,QED 重塑可扩展性

在 Web3 的广阔生态中,Doge 无疑是最具标志性和趣味性的项目之一。作为一种起源于网络文化的符号,Doge 从最初的互联网玩笑发展为如今备受全球关注的去中心化资产,依靠其独特的魅力和广泛的用户基础,构建了一个充满活力的社区。 …...

qt QAbstractTableModel详解

1、概述 QAbstractTableModel 是 Qt 框架中的一个类,用于在 Qt 应用程序中实现自定义的表格数据模型。它是 Qt 中的一个抽象基类,提供了创建和操作表格数据所需的接口。QAbstractTableModel 为模型提供了一个标准接口,这些模型将其数据表示为…...

掌握 Navicat 数据库结构设计 | 提升工作效率的秘诀

近期,我们介绍了 Navicat 17 的一系列的新特性,包括:兼容更多数据库、全新的模型设计、可视化 BI、智能数据分析、可视化查询解释、高质量数据字典、增强用户体验、扩展 MongoDB 功能、轻松固定查询结果、便捷 URI、支持更多平台等。今天&…...

Ollama AI 框架缺陷可能导致 DoS、模型盗窃和中毒

近日,东方联盟网络安全研究人员披露了 Ollama 人工智能 (AI) 框架中的六个安全漏洞,恶意行为者可能会利用这些漏洞执行各种操作,包括拒绝服务、模型中毒和模型盗窃。 知名网络安全专家、东方联盟创始人郭盛华表示:“总的来说&…...

vue 3:监听器

目录 1. 基本概念 2. 侦听数据源类型 1. 监听getter函数 2. 监听 ref 或 reactive 的引用 3. 多个来源组成的数组 4. 避免直接传递值!!! 3. 深层侦听器 4. 立即回调的侦听器 5. 一次性侦听器 6. watchEffect() 7. 暂停、恢复和停止…...

Java学习路线:Maven(四)Maven常用命令

在IDEA的Maven模块中,可以看到每个项目都有一个生命周期 这些生命周期实际上是Maven的一些插件,每个插件都有各自的功能,而双击这些插件就可以执行命令 这些命令的功能如下: clean:清除整个 target文件夹&#xff0c…...

服务器数据恢复—分区结构被破坏的reiserfs文件系统数据恢复案例

服务器数据恢复环境: 一台服务器中有一组由4块SAS硬盘组建的RAID5阵列,上层安装linux操作系统统。分区结构:boot分区LVM卷swap分区(按照顺序),LVM卷中划分了一个reiserfs文件系统作为根分区。 服务器故障…...

lua入门教程:type函数

在Lua中,type 函数是一个内置函数,用于返回给定值的类型。Lua 支持多种数据类型,包括 nil(空值)、boolean(布尔值)、number(数字)、string(字符串&#xff09…...

Java图片转word

该方法可以控制一页是否只显示存放一张图片 第一步 <dependency><groupId>org.apache.poi</groupId><artifactId>poi-ooxml</artifactId><version>5.2.3</version></dependency><dependency><groupId>org.apache…...

立体视觉的核心技术:视差计算与图像校正详解

立体视觉的核心技术&#xff1a;视差计算与图像校正详解 在立体视觉中&#xff0c;通过双目相机&#xff08;即左右两台相机&#xff09;的不同视角捕获的图像&#xff0c;结合几何关系&#xff0c;我们可以推算出场景中物体的深度。本文将深入讲解如何基于视差&#xff08;di…...

PaddleNLP的FAQ问答机器人

项目源码获取方式见文章末尾&#xff01; 600多个深度学习项目资料&#xff0c;快来加入社群一起学习吧。 《------往期经典推荐------》 项目名称 1.【DDRNet模型创新实现人像分割】 2.【卫星图像道路检测DeepLabV3Plus模型】 3.【GAN模型实现二次元头像生成】 4.【CNN模型实…...

2024年12月中国多场国际学术会议,EI检索录用!

2024年12月&#xff0c;多场国际学术会议将在中国多地召开&#xff0c;涵盖AI、机器人、大数据、网络安全、传感制造、环境工程、物联网等领域&#xff0c;促进学术交流&#xff0c;录用论文将EI检索&#xff0c;诚邀国内外专家参会。 第三届人工智能、人机交互和机器人国际学…...

日语学习的难易程度

日语学习的难易程度是一个相对主观的问题&#xff0c;它受到多种因素的影响&#xff0c;包括个人的语言学习能力、学习方法、学习时间、学习资源的可获得性以及个人对日语文化的兴趣和投入程度等。以下是对日语学习难易程度的一些分析&#xff1a; 优点与易学之处 文字系统&am…...

java-web-web后端知识小结

spring框架三大核心: IOC--控制反转 DI---依赖注入 AOP--面向切面编程 web开发技术小结 1.过滤器,JWT令牌 2.三层架构 IOC, DI AOP, 全局异常处理, 事务管理 mybatis 3.数据操作与存储 mysql 阿里云OSS(云存储) 各个技术的归属: 1.过滤器, cookie,session--javaWeb 2.JWT, 阿里…...

常见的排序算法(二)

归并排序 归并排序&#xff08;Merge Sort&#xff09;是一种基于分治法&#xff08;Divide and Conquer&#xff09;的排序算法。它将一个大的问题分解成小的问题&#xff0c;然后递归地解决这些小问题&#xff0c;最后合并&#xff08;merge&#xff09;得到最终的排序结果。…...

spark的RDD分区的设定规则

目录 一、第一种&#xff1a;parallelize 获取rdd时 二、第二种&#xff1a;通过外部读取数据-textFile 三、上面提到了默认分区数&#xff0c;那么默认分区是怎么计算呢&#xff1f; 一、第一种&#xff1a;parallelize 获取rdd时 没有指定&#xff1a;spark.default.paral…...

【点云网络】voxelnet 和 pointpillar

VoxelNet 和 pointpillar 这两个网络可以认为后者是前者的升级版本&#xff0c;都是采用了空间划分的方法&#xff0c; 一个是体素&#xff0c;一个是pillar, 前者是3D卷积处理中间特征&#xff0c;后者是2D卷积处理中间特征。 voxelnet voxelnet 应该是比较早的onestage的网…...

HAL库硬件IIC驱动气压传感器BMP180

环境 1、keilMDK 5.38 2、STM32CUBEMX 初始配置 默认即可。 程序 1、头文件 #ifndef __BMP_180_H #define __BMP_180_H#include "main.h"typedef struct {float fTemp; /*温度&#xff0c;摄氏度*/float fPressure; /*压力&#xff0c;pa*/float fAltitude; /*…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP&#xff0c;结果IP质量不佳&#xff0c;项目效率低下不说&#xff0c;还可能带来莫名的网络问题&#xff0c;是不是太闹心了&#xff1f;尤其是在面对海外专线IP时&#xff0c;到底怎么才能买到适合自己的呢&#xff1f;所以&#xff0c;挑IP绝对是个技…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献&#xff1a; stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下&#xff0c;文章也主…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...

高分辨率图像合成归一化流扩展

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 1 摘要 我们提出了STARFlow&#xff0c;一种基于归一化流的可扩展生成模型&#xff0c;它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流&#xff08;TARFlow&am…...