【信号处理】基于联合图像表示的深度学习卷积神经网络
Combined Signal Representations for Modulation Classification Using Deep Learning: Ambiguity Function, Constellation Diagram, and Eye Diagram

信号表示

Ambiguity Function(AF)
模糊函数描述了信号的两个维度(dimensions):延迟(delay)和多普勒(Doppler)。
clear;
clc;snr = 15;
modulation = [8, 16, 32];
ml = dictionary(15, "test", 35, "train"); % 检查是否已正确定义
base_path = sprintf('C:\\data\\AF%d', snr); % 正确的路径格式
disp(base_path);
mkdir(sprintf('AF%d', snr));
cd(sprintf('AF%d', snr));for operation = [15, 35]for p = 1:length(modulation)mod_dir = sprintf('%s/%d', ml(operation), modulation(p));if ~exist(mod_dir, 'dir')mkdir(mod_dir); % 如果目录不存在,则创建endend
end% 滤波器和采样参数
sps = 1; % 每个符号的采样数(过采样因子)
fs = 20; % 采样率设置为20 Hz
prf = 1; % 脉冲重复频率设置为1 Hz
filtlen = 20; % 滤波器长度,单位:符号
rolloff = 1; % 滤波器滚降因子
rrcFilter = rcosdesign(rolloff, filtlen, sps); % 设计升余弦 FIR 脉冲整形滤波器% 主模拟循环
for m = [15, 35]for j = 1:length(modulation)M = modulation(j);k = log2(M); % 每个符号的比特数numBits = 2 * k; % 对于 QAM,这个值调整为 2*kfor i = 1:mrng shuffle; % 使用默认的随机数生成器dataIn = randi([0 M-1], numBits, 1); % 生成随机数据disp(i);% 使用 QAM 进行调制dataMod = qammod(dataIn, M); % 使用 qammod 进行 QAM 调制% 滤波并加入噪声txFiltSignal = upfirdn(dataMod, rrcFilter, sps, 1);rxSignal = awgn(txFiltSignal, snr, 'measured');% 计算模糊函数x = rxSignal; % 正确使用 rxSignal[afmag, delay, doppler] = ambgfun(x, fs, prf);<相关文章:
【信号处理】基于联合图像表示的深度学习卷积神经网络
Combined Signal Representations for Modulation Classification Using Deep Learning: Ambiguity Function, Constellation Diagram, and Eye Diagram 信号表示 Ambiguity Function(AF) 模糊函数描述了信号的两个维度(dimensions):延迟(delay)和多普勒(Doppler)。 …...
C#基础-区分数组与集合
目录 区分数组与集合 1.定义 1)数组 2)集合 2.大小 1)数组 2)集合 3.访问速度 1)数组 2)集合 4.内存管理 1)数组 2)集合 5.使用场景 1)数组 2࿰…...
ORACLE 19C 安装数据库补丁的详细过程
ORACLE 19c安装DB补丁: 1 确定OPatch的可用性:这里需要注意的是p6880880_190000_Linux-x86-64.zip是有版本对应区别的,需要注意你要打的补丁版本是否支持。 2 将原$ORACLE_HOME目录下的OPatch目录删除或者改名,比如说:…...
tensorflow案例5--基于改进VGG16模型的马铃薯识别,准确率提升0.6%,计算量降低78.07%
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 前言 本次采用VGG16模型进行预测,准确率达到了98.875,但是修改VGG16网络结构, 准确率达到了0.9969,并且计算量…...
代码中的设计模式-策略模式
假如我们有一段代码,有很多的if else function executeAction(type) {if (type A) {console.log(Action A);} else if (type B) {console.log(Action B);} else if (type C) {console.log(Action C);} else {console.log(Unknown action);} }executeAction(A); // 输出: Ac…...
后端Node学习项目-项目基础搭建
前言 各位好,我是前端SkyRain。最近为了响应公司号召,开始对后端知识的学习,作为纯粹小白,记录下每一步的操作流程。 项目仓库:https://gitee.com/sky-rain-drht/drht-node 因为写了文档,代码里注释不是很…...
Python | Leetcode Python题解之第538题把二叉搜索树转换为累加树
题目: 题解: class Solution:def convertBST(self, root: TreeNode) -> TreeNode:def getSuccessor(node: TreeNode) -> TreeNode:succ node.rightwhile succ.left and succ.left ! node:succ succ.leftreturn succtotal 0node rootwhile nod…...
【ZeroMQ 】ZeroMQ中inproc优势有哪些?与其它传输协议有哪些不同?
inproc 是 ZeroMQ 提供的一种传输协议,用于在同一进程内的不同线程之间进行高效的通信。与其他传输协议(如 tcp、ipc 等)不同,inproc 专门针对线程间通信进行了优化,具有极低的延迟和开销。以下是 inproc 的底层原理和…...
spark的学习-03
RDD的创建的两种方式: 方式一:并行化一个已存在的集合 方法:parallelize 并行的意思 将一个集合转换为RDD 方式二:读取外部共享存储系统 方法:textFile、wholeTextFile、newAPIHadoopRDD等 读取外部存储系统的数…...
一文了解Android SELinux
在Android系统中,SELinux(Security-Enhanced Linux)是一个增强的安全机制,用于对系统进行强制访问控制(Mandatory Access Control,MAC)。它限制了应用程序和进程的访问权限,提供了更…...
数据血缘追踪是如何在ETL过程中发挥作用?
在大数据环境下,数据血缘追踪具有重要意义,它能够帮助用户了解数据的派生关系、变换过程和使用情况,进而提高数据的可信度和可操作性。通过数据血缘追踪,ETL用户可以准确追溯数据的来源,快速排查数据异常和问题。 一、…...
跟我学C++中级篇——生产中如何调试程序
一、程序的BUG和异常 程序不是发布到生产环境就万事大吉了。没有人敢保证自己写的代码没有BUG,放心,说这种话的人,基本可以断定是小白。如果在开发阶段出现问题,还是比较好解决的,但是如果真到了生产上,可…...
Python爬虫实战 | 爬取网易云音乐热歌榜单
网易云音乐热歌榜单爬虫实战 环境准备 Python 3.xrequests 库BeautifulSoup 库 安装依赖 pip install requests beautifulsoup4代码 import requests from bs4 import BeautifulSoupdef get_cloud_music_hot_songs():url "http://music.163.com/#/discover/playlist…...
apk因检测是否使用代理无法抓包绕过方式
最近学习了如何在模拟器上抓取APP的包,APP防恶意行为的措施可分为三类: (1)反模拟器调试 (2)反代理 (3)反证书检验 第一种情况: 有的app检验是否使用系统代理,…...
DevOps业务价值流:架构设计最佳实践
系统设计阶段作为需求与研发之间的桥梁,在需求设计阶段的原型设计评审环节,尽管项目组人员可能未完全到齐,但关键角色必须到位,包括技术组长和测试组长。这一安排旨在同步推进两项核心任务:一是完成系统的架构设计&…...
计算机网络——SDN
分布式控制路由 集中式控制路由...
开源数据库 - mysql - innodb源码阅读 - master线程(一)
master struct /** The master thread controlling the server. */void srv_master_thread() {DBUG_TRACE;srv_slot_t *slot; // 槽位THD *thd create_internal_thd(); // 创建内部线程ut_ad(!srv_read_only_mode); //断言 srv_read_only_mode 为 falsesrv_main_thread_proce…...
vscode ssh连接autodl失败
autodl服务器已开启,vscode弹窗显示连接失败 0. 检查状态 这里的端口和主机根据自己的连接更改 ssh -p 52165 rootregion-45.autodl.pro1. 修改config权限 按返回的路径找到config文件 右键--属性--安全--高级--禁用继承--从此对象中删除所有已继承的权限--添加…...
文件系统和日志管理 附实验:远程访问第一台虚拟机日志
文件系统和日志管理 文件系统:文件系统提供了一个接口,用户用来访问硬件设备(硬盘)。 硬件设备上对文件的管理 文件存储在硬盘上,硬盘最小的存储单位是512字节,扇区。 文件在硬盘上的最小存储单位&…...
云上拼团GO指南——腾讯云博客部署案例,双11欢乐GO
知孤云出岫-CSDN博客 目录 腾讯云双11活动介绍 一.双十一活动入口 二.活动亮点 (一)双十一上云拼团Go (二)省钱攻略 (三)上云,多类型服务器供您选择 三.会员双十一冲榜活动 (一)活动内容 &#x…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
