当前位置: 首页 > news >正文

腾讯混元3D模型Hunyuan3D-1.0部署与推理优化指南

腾讯混元3D模型Hunyuan3D-1.0部署与推理优化指南

摘要:
本文将详细介绍如何部署腾讯混元3D模型Hunyuan3D-1.0,并针对不同硬件配置提供优化的推理方案。我们将探讨如何在有限的GPU内存下,通过调整配置来优化模型的推理性能。

1. 项目概览
腾讯混元3D模型Hunyuan3D-1.0是一个强大的生成模型,支持文本和图像条件生成。项目地址为:Hunyuan3D-1 GitHub。为了简化部署过程,AutoDL社区提供了预装所需依赖的镜像。
https://www.codewithgpu.com/i/Tencent/Hunyuan3D-1/Hunyuan3D-1.0

2. 硬件与软件配置

  • 系统:Ubuntu
  • GPU:NVIDIA GeForce RTX 4090 D(24GB VRAM)
  • 系统盘:30GB
  • 数据盘:50GB
  • 内存:60GB
  • 软件
    • Python 3.10
    • PyTorch 2.1.2+cu121
    • CUDA 12.1
      在这里插入图片描述

3.AutoDL 环境配置与学术加速
开启学术加速,通过以下命令:

source /etc/network_turbo

取消学术加速:

unset http_proxy && unset https_proxy

查看剩余空间:

source ~/.bashrc
source /etc/network_turbo
conda init
conda activate /root/miniconda3

4. 安装PyTorch3D
根据PyTorch3D安装文档,我们可以通过以下命令安装
「pytorch3d-0.7.5-py310_cu121_pyt210-linux_x86_64.whl」
下载链接:https://pan.quark.cn/s/69791f03dced
PyTorch3D:

pip install pytorch3d-0.7.5-py310_cu121_pyt210-linux_x86_64.whl

或使用:

pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt210/download.html

5. CUDA检查
检查CUDA可用性和版本:

python -c "import torch; print(f'PyTorch 版本: {torch.__version__}'); print(f'CUDA 是否可用: {torch.cuda.is_available()}'); print(f'CUDA 版本: {torch.version.cuda if torch.cuda.is_available() else "N/A"}'); print(f'GPU 数量: {torch.cuda.device_count()}'); print(f'GPU 名称: {torch.cuda.get_device_name(0) if torch.cuda.is_available() else "N/A"}')"

示例输出:

PyTorch 版本: 2.1.2+cu121
CUDA 是否可用: True
CUDA 版本: 12.1
GPU 数量: 1
GPU 名称: NVIDIA GeForce RTX 4090 D

6. 项目部署
由于模型文件约28G,需在数据盘部署。首先克隆项目:

cd /root/autodl-tmp
git clone https://github.com/Tencent/Hunyuan3D-1
cd Hunyuan3D-1/

修改env_install.sh文件,删除不必要的安装命令,然后运行:

bash env_install.sh
pip install tbb

7. 下载模型
使用夸克网盘下载模型文件:
腾讯混元Hunyuan3D-1.0模型文件weights.7z

pip install "huggingface_hub[cli]"
#设置镜像加速
export HF_ENDPOINT=https://hf-mirror.commkdir weights\hunyuanDiT
huggingface-cli download tencent/Hunyuan3D-1 --local-dir weightshuggingface-cli download Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled --local-dir weights/hunyuanDiT

8. 运行模型
对于小于30GB的GPU,使用Lite版并开启内存优化:

python3 app.py --use_lite --save_memory

对于大于30GB的GPU,使用标准版:

python3 app.py

9. Gradio演示
我们准备了两个版本的多视图生成,std和lite。运行以下命令后,通过http://<服务器IP>:8080访问演示:

python3 app.py
python3 app.py --save_memory
python3 app.py --use_lite
python3 app.py --use_lite --save_memory

结论:
本文提供了腾讯混元3D模型Hunyuan3D-1.0的详细部署和优化指南,帮助用户在不同硬件配置下实现高效的模型推理。

相关文章:

腾讯混元3D模型Hunyuan3D-1.0部署与推理优化指南

腾讯混元3D模型Hunyuan3D-1.0部署与推理优化指南 摘要&#xff1a; 本文将详细介绍如何部署腾讯混元3D模型Hunyuan3D-1.0&#xff0c;并针对不同硬件配置提供优化的推理方案。我们将探讨如何在有限的GPU内存下&#xff0c;通过调整配置来优化模型的推理性能。 1. 项目概览 腾…...

基于 PyTorch 从零手搓一个GPT Transformer 对话大模型

一、从零手实现 GPT Transformer 模型架构 近年来&#xff0c;大模型的发展势头迅猛&#xff0c;成为了人工智能领域的研究热点。大模型以其强大的语言理解和生成能力&#xff0c;在自然语言处理、机器翻译、文本生成等多个领域取得了显著的成果。但这些都离不开其背后的核心架…...

IDEA构建JavaWeb项目,并通过Tomcat成功运行

目录 一、Tomcat简介 二、Tomcat安装步骤 1.选择分支下载 2.点击下载zip安装包 3.解压到没有中文、空格和特殊字符的目录下 4.双击bin目录下的startup.bat脚本启动Tomcat 5.浏览器访问Tomcat 6.关闭Tomcat服务器 三、Tomcat目录介绍 四、WEB项目的标准结构 五、WEB…...

Mac解决 zsh: command not found: ll

Mac解决 zsh: command not found: ll 文章目录 Mac解决 zsh: command not found: ll解决方法 解决方法 1.打开bash_profile 配置文件vim ~/.bash_profile2.在文件中添加配置&#xff1a;alias llls -alF键盘按下 I 键进入编辑模式3. alias llls -alF添加完配置后&#xff0c;按…...

库打包工具 rollup

库打包工具 rollup 摘要 **概念&#xff1a;**rollup是一个模块化的打包工具 注&#xff1a;实际应用中&#xff0c;rollup更多是一个库打包工具 与Webpack的区别&#xff1a; 文件处理&#xff1a; rollup 更多专注于 JS 代码&#xff0c;并针对 ES Module 进行打包webpa…...

unplugin-vue-components 库作用

一、基本概念与用途 1. 自动导入 Vue 组件 unplugin - vue - components是一个用于 Vue 项目的插件&#xff0c;主要功能是自动导入组件&#xff0c;从而减少在 Vue 组件中手动导入其他组件的繁琐过程。 在大型 Vue 项目中&#xff0c;往往会有许多自定义组件或者第三方组件…...

LinkedList和单双链表。

java中提供了双向链表的动态数据结构 --- LinkedList&#xff0c;它同时也实现了List接口&#xff0c;可以当作普通的列表来使用。也可以自定义实现链表。 单向链表&#xff1a;一个节点本节点数据下个节点地址 给定两个有序链表的头指针head1和head2&#xff0c;打印两个链表…...

AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例

文末有免费工具可在线体验&#xff0c;或者网络搜索关键词“思通开源AI能力平台” 一、扫描与图像预处理 技术实现过程 在纸质档案的数字化过程中&#xff0c;首先需要使用高精度扫描仪对纸质文档进行扫描&#xff0c;生成高清的数字图像。这一步骤是整个OCR流程的基础&#xf…...

Spring boot 读模块项目升级为spring cloud 项目步骤以及问题

1.结构说明 bean 模块 &#xff0c;public 模块&#xff0c; client 模块&#xff0c; erp模块&#xff0c;system 主模块。 2.环境说明以及pom 原本环境 新环境 mysql 5.7 -------------- mysql 8.0 maven 3.9.6 jdk 8 -----------…...

时序数据库之influxdb和倒排索引以及LSM-TREE

一、时序数据库的特点 1、时序数据库用作打点&#xff0c;用来做监控使用&#xff0c;属于写多读少的场景&#xff0c;而且由于时间不可逆&#xff0c;几乎不可能出现更新的操作。而且监控数据一般只会查询最近几分钟数据&#xff0c;冷热数据查询频率非常明显。因此非常贴合ES…...

如何避免消息的重复消费问题?(消息消费时的幂等性)

如何避免消息的重复消费问题 1、 消息的幂等性1.1、概念1.2、产生业务场景 2、全局唯一IDRedis解决消息幂等性问题2.1、application.yml配置文件2.2、生产者发送消息2.3、消费者接收消息2.4、pom.xml引入依赖2.5、RabbitConfig配置类2.6、启动类2.7、订单对象2.8、测试 1、 消息…...

【Java SE】类与对象

现实世界中&#xff0c;随处可见的一个事物实体就是对象&#xff0c;而类就是同一类事物&#xff08;或对象&#xff09;的统称&#xff0c;由一个类构造对象的过程称为创建这个类的一个实例&#xff08;instance&#xff09;&#xff0c;即&#xff1a; 类&#xff08;class&…...

基于springboot的公益服务平台的设计与实现

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于springboot的公益服务平台的设计与实…...

Tomcat(6) 什么是Servlet容器?

Servlet容器是Java EE技术中的一个关键组件&#xff0c;它负责管理和执行Servlet。Servlet容器提供了运行时环境&#xff0c;使得Servlet能够接收和响应来自客户端的HTTP请求。以下是Servlet容器的详细解释&#xff0c;以及一些相关的代码示例。 Servlet容器的主要功能 加载和…...

用js去除变量里的html标签

要用 JavaScript 去除字符串中的 HTML 标签&#xff0c;你可以使用正则表达式。以下是一个简单的示例代码&#xff1a; function removeHTMLTags(str) {return str.replace(/<[^>]*>/g, ); }// 示例 var str <p>This is <b>bold</b> text with <…...

Vue3+element-plus摘要

1.如果自己电脑vue版本是vue2版本&#xff0c;下面将详细介绍如何在vue2版本基础上继续安装 vue3版本且不会影响vue2版本的使用 1-1 在c盘或者别的盘建一个文件夹vue3 1-2 在这个文件夹里使用WINR 打开终端 输入命令 npm install vue/cli 安装完即可 1-3 然后进入此文件夹中的n…...

Android Studio 将项目打包成apk文件

第一步&#xff1a;选择Build -> Generate Signed APK 会出现&#xff1a; 我们选择 Create new… 然后选择你要存放密钥的地方 点击ok之后&#xff0c;则选择好了文件&#xff0c;并生成了jks文件了。 点击ok之后&#xff0c; 会出现&#xff1a; 选择release&#xf…...

贪心算法day2(最长递增子序列)

目录 1.最长递增子序列 方法一&#xff1a;动态规划 方法二&#xff1a;贪心二分查找 1.最长递增子序列 链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 方法一&#xff1a;动态规划 思路&#xff1a;我们定义dp[i]为最长递增子序列&#xff0c;那么dp[j]就是…...

arcgis pro 学习笔记

二维三维集合在一起&#xff0c;与arcgis不同 一、首次使用&#xff0c;几个基本设置 1.选项——常规里面设置自动保存时间 2.新建工程文件&#xff0c;会自动加载地图&#xff0c;可以在选项里面设置为无&#xff0c;以提高启动效率。 3.设置缓存位置&#xff0c;可勾选每次…...

OpenGL 进阶系列06 - OpenGL变换反馈(TransformFeedback)

一:概述 变换反馈(Transform Feedback)是 OpenGL 中的一项技术,允许你将顶点着色器的输出(例如变换后的顶点数据)直接传输到缓冲区,而不是将结果渲染到屏幕上。它在图形计算中非常有用,尤其在粒子系统、模拟、几何处理等场景中,可以用来获取顶点处理的中间结果,并将其…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...