二叉树遍历/算法数据结构
六、树
6.1遍历算法
6.1.1前中后序
-
在做递归时,最重要是三步骤
-
确定递归函数的返回值和参数
-
确定终止条件
-
确定单层递归的逻辑
伪代码 void travel(cur, vec) {if (cur == null) {return ;}vec.push(cur->middle, vec); // 递归中节点vec.push(cur->left, vec); // 递归左节点vec.push(cur->right, vec); // 递归右节点 }
-
其实很简单,参数就是要目前遍历节点在哪,返回值也同理,终止条件就是指遍历到null的时候回溯,逻辑不要想复杂,根据顺序移动上述上个递归函数即可
-
前顺遍历
class Solution {public List<Integer> preorderTraversal(TreeNode root) {List<Integer> result = new ArrayList<>();preorder(root, result);return result;}public void preorder(TreeNode root, List<Integer> result) {if (root == null) {return; }result.add(root.val); // 中节点preorder(root.left, result); // 左子树preorder(root.right, result); // 右子树} }
-
中序遍历
class Solution {public List<Integer> inorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();inorder(root, res);return res;}public void inorder(TreeNode root, List<Integer> res) {if (root == null) {return;}inorder(root.left, res);res.add(root.val);inorder(root.right, res);} }
-
后序遍历
class Solution {public List<Integer> postorderTraversal(TreeNode root) {List<Integer> result = new ArrayList<>();postorder(root, result);return result;}public void postorder(TreeNode root, List<Integer> result) {if (root == null) {return;}postorder(root.left, result); postorder(root.right, result);result.add(root.val);} }
-
其实很简单,根据遍历的顺序摆放遍历顺序和添加元素的顺序,(root.left, result)代表左子树,(root.right, result)代表右子树,(root.val)代表中节点。
-
递归
-
前序(要理解遍历的核心,先把中节点塞入,然后根据栈去模拟,先加入右节点然后是左节点,移动到左节点继续加入)
class Solution {public List<Integer> preorderTraversal(TreeNode root) {Stack<TreeNode> stack = new Stack<>();List<Integer> res = new ArrayList<>();if (root == null){return res;}stack.push(root);while (!stack.isEmpty()) {TreeNode temp = stack.pop();res.add(temp.val);if (temp.right != null) {stack.push(temp.right);}if (temp.left != null) {stack.push(temp.left);}}return res;} }
-
中序(核心就是每收集一个元素到res数组中,其实都是以中节点的姿态进入,这也对应了为什么if循环为什么要push一个null节点,前中后也只要交换顺序即可)
class Solution {public List<Integer> inorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();Stack<TreeNode> stack = new Stack<>();if (root != null) stack.push(root);while (!stack.isEmpty()) {TreeNode temp = stack.peek();if (temp != null) {stack.pop();if (temp.right != null) stack.add(temp.right);stack.push(temp);stack.push(null);if (temp.left != null) stack.add(temp.left);}else {stack.pop();temp = stack.peek();stack.pop();res.add(temp.val);}}return res;} }
-
后序(就是前序遍历的左右调换顺序,然后再倒叙结果数组)
class Solution {public List<Integer> postorderTraversal(TreeNode root) {Stack<TreeNode> stack = new Stack<>();List<Integer> res = new ArrayList<>();if (root == null){return res;}stack.push(root);while (!stack.isEmpty()) {TreeNode temp = stack.pop();res.add(temp.val);if (temp.left != null) {stack.push(temp.left);}if (temp.right != null) {stack.push(temp.right);}}Collections.reverse(res);return res;} }
-
6.1.2层序遍历
-
递归算法,一般递归就是深度优先了,要明确三要素,一般遍历就是参数为当前处理节点+加其它附属条件,循环处理按照顺序(这里是左到右),结束条件都是到底直接返回
class Solution {List<List<Integer>> res = new ArrayList<List<Integer>>();public List<List<Integer>> levelOrder(TreeNode root) {check(root, 0);return res;}public void check(TreeNode temp, int deep) {if (temp == null) {return;}deep++;if (res.size() < deep) { // 创建数组的条件,不可能预先创建的List<Integer> res1 = new ArrayList<>();res.add(res1);}res.get(deep-1).add(temp.val); // 注意为deep-1,区分索引和深度的区别check(temp.left, deep); // 左子树check(temp.right, deep); // 右子树} }
-
迭代,就是按照队列,先进先出,按照层数模拟也就是广度优先遍历
class Solution {public List<List<Integer>> levelOrder(TreeNode root) {Deque<TreeNode> queue = new ArrayDeque<>();List<List<Integer>> res = new ArrayList<List<Integer>>(); // 结果二维数组if (root != null) {queue.addLast(root); // 防止root为空}while (!queue.isEmpty()) {int size = queue.size(); // size代表每一层几个元素List<Integer> res1 = new ArrayList<>();while (size > 0) { // size为0这一层就停止TreeNode temp = queue.removeFirst();res1.add(temp.val);if (temp.left != null) queue.addLast(temp.left); // 左节点if (temp.right != null) queue.addLast(temp.right); // 右节点size--; // 记得减一}res.add(res1);}return res;} }
相关文章:
二叉树遍历/算法数据结构
六、树 6.1遍历算法 6.1.1前中后序 在做递归时,最重要是三步骤 确定递归函数的返回值和参数 确定终止条件 确定单层递归的逻辑 伪代码 void travel(cur, vec) {if (cur null) {return ;}vec.push(cur->middle, vec); // 递归中节点vec.push(cur->left, …...
C#字符串的不可变性:内存管理与线程安全的优势分析
在C#编程中,字符串(String)被设计为不可变对象,这意味着一旦创建字符串对象后,其内容是不可更改的。这种设计通过在每次修改字符串时创建一个新实例,而不是直接更改原有字符串实例,来实现不可变…...
【杂记】之语法学习第四课手写函数与结构体
函数 如同我们数学中学的 f(x) ax b ,函数就是把一个东西丢进去,然后进行类似的操作变化,最终得到的可以是一个数,也可能什么都得不到而只是进行一项操作。 如sqrt() , max() 和 swap() 这样的其实都是函数&#x…...

细说STM32单片机USART中断收发RTC实时时间并改善其鲁棒性的另一种方法
目录 一、工程目的 1、目标 2、通讯协议及应对错误指令的处理目标 二、工程设置 三、程序改进 四、下载与调试 1、合规的指令 2、不以#开头,但以;结束,长度不限 3、以#开头,不以;结束,也不包含;,长…...

python使用turtle画图快速入门,轻松完成作业练习
turtle介绍 turtle是一个绘图库,可以通过编程进行绘图。其模拟了一个乌龟在屏幕上的运动过程。该库通常用于给青少年学习编程,当然,也可以使用其进行作图。 在一些学校中,可能在python学习的课程中,要求完成turtle绘…...

【C++】新手入门指南
> 🍃 本系列为初阶C的内容,如果感兴趣,欢迎订阅🚩 > 🎊个人主页:[小编的个人主页])小编的个人主页 > 🎀 🎉欢迎大家点赞👍收藏⭐文章 > ✌️ 🤞 …...

C++使用开源ConcurrentQueue库处理自定义业务数据类
ConcurrentQueue开源库介绍 ConcurrentQueue是一个高性能的、线程安全的并发队列库。它旨在提供高效、无锁的数据结构,适用于多线程环境中的数据交换。concurrentqueue 支持多个生产者和多个消费者,并且提供了多种配置选项来优化性能和内存使用。 Conc…...

在vue3的vite网络请求报错 [vite] http proxy error:
在开发的过程中 代理proxy报错: [vite] http proxy error: /ranking/hostRank?dateType1 Error: connect ETIMEDOUT 43.xxx.xxx.xxx:443 网络请求是http的: // vite.config.ts import { Agent } from node:http;server: {host: 0.0.0.0,port: port,open: true,https: false,…...
ElasticSearch 简单的查询。查询存在该字段的资源,更新,统计
1.查询存在该字段的数据 {"query": {"bool": {"must": [{"exists": { "field": "chainCode"}}],"must_not": {"exists": {"field": "isDelete"}}}} } 备注:…...
FOFA使用教程之从零到精通
FOFA使用教程之从零到精通 前言一、关于网络资产测绘的概念1、啥是网络空间资产测绘2、啥是互联网资产二、FOFA的简要介绍1、FOFA地址是啥?2、关于FOFA的简要介绍三、FOFA精讲1、运算符规则详解① 关于 = 号的使用说明② 关于 == 号的使用说明③ 关于 && 号的使用说明…...

【提高篇】3.2 GPIO(二,基本结构)
目录 一,GPIO的基本结构 二,保护二极管 三,上拉、下拉电阻 四,施密特触发器 五,P-MOS 管和 N-MOS 管 P-MOS管和N-MOS管的区别 六,片上外设 七,IDR,ODR,BSRR寄存器 7.1 IDR(Input Data Register) 7.2 ODR(Output Data Register) 7.3 BSRR(Bit Set/Rese…...

UE hard/soft reference| DDX DDY | Unity pcg color
目录 1.虚幻引擎性能优化 (附0跳转Unity对应机制) hard reference and soft reference 1. 硬引用(Hard Reference) 2. 软引用(Soft Reference) 3. 使用原则 2.空间梯度转法线 DDX DDY节点 编辑 …...
macOS 应用公证指南:使用 fastlane 实现自动化公证流程
背景介绍 在 macOS 系统上,为了保护用户安全,Apple 要求开发者对未通过 Mac App Store 分发的应用程序进行公证(Notarization)。如果应用程序没有经过公证,用户在运行时会看到警告弹窗,这会影响用户体验。虽然开启沙箱模式的应用可以直接通过 App Store 分发来避免这个问题…...
深度学习:解密图像、音频和视频数据的“理解”之道20241105
🔍 深度学习:解密图像、音频和视频数据的“理解”之道 深度学习已然成为人工智能领域的中流砥柱,它如何处理不同类型的数据(如图像、音频、视频)?如何将这些数据转换成计算机能理解和学习的“语言”&#…...

uniapp 实现瀑布流
效果演示 组件下载 瀑布流布局-waterfall - DCloud 插件市场...

计算机毕业设计 | springboot+vue智慧工地管理系统 前后端分离后台管理(附源码+文档)
1,项目介绍 管理信息是重要的资源、管理信息是决策的基础。同时管理信息是实施管理控制的依据以及是联系组织内外的纽带。对于企业,最重要的5大资源包括人、物资、能源、资金、信息。人、物资、能源、资金是可以看见的有形资源,信息则是一种…...

vue中html如何转成pdf下载,pdf转base64,忽略某个元素渲染在pdf中,方法封装
一、下载 html2Canvas jspdf npm install jspdf html2canvas二、封装转换下载方法 htmlToPdf.js import html2Canvas from html2canvas import JsPDF from jspdf/*** param {*} reportName 下载时候的标题* param {*} isDownload 是否下载默认为下载,传false不…...
Ubuntu下如何管理多个ssh密钥
Ubuntu下如何管理多个ssh密钥 前言 我一直在逃避这个问题,误以为我能够单纯地用一个 ssh 走天下。 好吧,现实是我不得不管理多个 ssh 做,那就写个博客总结一下吧。 查阅后发现前人已经总结了不少,那我就结合之后ÿ…...

[vulnhub] DarkHole: 1
https://www.vulnhub.com/entry/darkhole-1,724/ 端口扫描主机发现 探测存活主机,184是靶机 nmap -sP 192.168.75.0/24 Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-11-08 09:59 CST Nmap scan report for 192.168.75.1 Host is up (0.00027s latency). MA…...

商淘云连锁企业管理五大功能 收银系统助力门店进销存同步
连锁企业管理的五大功能相互协作,共同确保连锁门店能够高效运营、降低成本、提升客户满意度,并最终实现盈利目标。今天,商淘云分享连锁企业管理的五大功能: 1、进销存管理:进销存管理是连锁企业的基础功能之一…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...

如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...

STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...