当前位置: 首页 > news >正文

【笔记】LLC电路工作频点选择 2-2 开关管与滤波压力

LLC谐振变换器稳态工作波形分析 - 知乎,上面这篇文的结论相较MPS那篇文章的结论更严格。我们分析一下它的频点选择为什么会更窄:

1. LLC电路模型

  • 电流滞后的特性就是电路呈感性
  • 注意这里也是开关管ZVS开通。

 2.工作循环的波形

  • iLm的波形,最终近似呈现三角波的特征。它会一直充电,或者反向充电。这是因为功率变压器Lm的电压被钳位,这是按照L*di/dt的规则运行,提供稳定的次级电压。
  • t0->t1|t3-t4文中称为死区。死区时间内,电流流过了开关管反向并联的二极管。最终实现ZVS导通。

2.1 t1->t2阶段 Lm上升沿

2.1.1 等效电路 LrCr

  2.2 t2->t3 开关管仍导通,但谐振电路电压饱和

猜测:此时的变压器初级电流将向Cr充电。Cr进入线性充电区域。

2.2.1 等效电路 LrLmCr

2.3 t3->t4 死区 开关管全部关断

此时仍然是电感续流,次级稳压二极管在维持Lm电流恒定。此时,电感的大电流流过开关管反向并联的二极管泄流。

3.文中的工作频率限制条件

3.1 开关频率Fs与谐振频率Fr的在不同工况下的电路特征 

 

它主要考虑的因素是谐振电路自身的最大电流是否在iLm的峰值点到来前就达到。

3.2 开关频率大于谐振频率的不利条件

然后:

 4.结论

  • 1.Fs不能大于Fr. Fr就是LrCr的那个谐振点。

  • 2.系统工作频点最好在ZVS2的区域。
    • ZVS1的问题在于开关管的损耗加大。
    • 滤波电容的压力也会增大,因为谐振电容需要消耗掉因为波形异常,出现的高次谐波

相关文章:

【笔记】LLC电路工作频点选择 2-2 开关管与滤波压力

LLC谐振变换器稳态工作波形分析 - 知乎,上面这篇文的结论相较MPS那篇文章的结论更严格。我们分析一下它的频点选择为什么会更窄: 1. LLC电路模型 电流滞后的特性就是电路呈感性注意这里也是开关管ZVS开通。 2.工作循环的波形 iLm的波形,最终…...

【CUDA】认识CUDA

目录 一、CUDA编程 二、第一个CUDA程序 三、CUDA关键字 四、device管理 4.1 初始化 4.2 Runtime API查询GPU信息 4.3 决定最佳GPU CUDA C 编程指南CUDA C在线文档:CUDA C 编程指南 CUDA是并行计算的平台和类C编程模型,能很容易的实现并行算法。只…...

Linux(CentOS)yum update -y 事故

CentOS版本:CentOS 7 事情经过: 1、安装好CentOS 7,系统自带JDK8,版本为:1.8.0_181 2、安装好JDK17,版本为:17.0.13 3、为了安装MySQL执行了 yum update -y(这个时候不知道该命令的…...

AI绘画赚钱秘籍!掌握ai绘画赚钱技巧,开启副业新篇章,ai绘画赚钱实战指南!

AI绘画赚钱:方法与策略 一、引言 ​ 随着人工智能技术的日益发展,AI绘画作为新兴领域,正逐渐成为赚钱的新途径。本文将从多个角度探讨AI绘画赚钱的完整策略,帮助读者深入了解并把握这一领域的商机。 二、AI绘画赚钱的主要方式…...

HCIP-HarmonyOS Application Developer V1.0 笔记(四)

平板/折叠屏设计 自适应动态布局:相对拉伸、相对缩放、延伸布局 响应式动态布局:挪移布局、重复布局、瀑布布局 Sketch 插件 设计系统:提供了 HarmonyOS 设计语言中定义的视觉参数和设计资源文件。 控件库:按类别组织控件&…...

【前端】Svelte:组件封装与使用

在 Svelte 中,组件化是开发的核心理念。将页面的不同部分封装成独立组件,不仅可以提升代码的复用性,还能让项目的结构更加清晰。在本文中,我们将介绍如何创建、封装、引入和使用 Svelte 组件,帮助你快速上手 Svelte 的…...

STM32标准库-待机模式

1.1 STM32待机模式简介 STM32单片机具有低功耗模式,包括睡眠、停止和待机三种。 运行状态下,HCLK为CPU提供时钟。HCLK由AHB预分频器分频后直接输出得到。 低功耗模式选择需考虑电源消耗、启动时间和唤醒源。 睡眠模式停CPU不停外设时钟; 停止…...

【论文笔记】The Power of Scale for Parameter-Efficient Prompt Tuning

🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 基本信息 标题: The Power of Scale for P…...

几个docker可用的镜像源

几个docker可用的镜像源 &#x1f490;The Begin&#x1f490;点点关注&#xff0c;收藏不迷路&#x1f490; sudo rm -rf /etc/docker/daemon.json sudo mkdir -p /etc/dockersudo tee /etc/docker/daemon.json <<-EOF {"registry-mirrors": ["https://d…...

Spring学习笔记_27——@EnableLoadTimeWeaving

EnableLoadTimeWeaving 1. 介绍 在Spring框架中&#xff0c;EnableLoadTimeWeaving 是一个注解&#xff0c;它用于启用加载时织入&#xff08;Load-Time Weaving, LTW&#xff09; LWT[Spring学习笔记_26——LWT-CSDN博客] 2. 场景 AOP&#xff1a;在Spring框架中&#xf…...

【数据分析】如何构建指标体系?

有哪些指标体系搭建模型&#xff1f;五个步骤教你从0开始搭建指标体系 一、企业指标体系搭建存在什么问题 许多企业在搭建数据指标体系时遇到了诸多难题&#xff0c;如问题定位不准确、数据采集不完整、目标不一致、报表无序、指标覆盖不全面以及报表价值未充分利用等。 1、…...

大数据程序猿不可不看的资料大全

​ 随着大数据技术的发展&#xff0c;大数据程序猿在数据采集、处理、分析、存储等方面的技能需求不断增加。要在这个领域保持竞争力&#xff0c;系统性地学习和掌握大数据工具、技术架构和行业趋势是非常重要的。以下为您提供一份围绕大数据程序猿不可不看的资料大全&#xf…...

【架构设计常见技术】

EJB EJB是服务器端的组件模型&#xff0c;使开发者能够构建可扩展、分布式的业务逻辑组件。这些组件运行在EJB容器中&#xff0c;EJB将各功能模块封装成独立的组件&#xff0c;能够被不同的客户端应用程序调用&#xff0c;简化开发过程&#xff0c;支持分布式应用开发。 IOC …...

LLMs之MemFree:MemFree的简介、安装和使用方法、案例应用之详细攻略

LLMs之MemFree&#xff1a;MemFree的简介、安装和使用方法、案例应用之详细攻略 目录 MemFree的简介 1、MemFree的价值 2、MemFree 配备了强大的功能&#xff0c;可满足各种搜索和生产力需求 3、MemFree AI UI生成器功能 MemFree 安装和使用方法 1. 前端安装 2. 向量服务…...

Hive简介 | 体系结构

Hive简介 Hive 是一个框架&#xff0c;可以通过编写sql的方式&#xff0c;自动的编译为MR任务的一个工具。 在这个世界上&#xff0c;会写SQL的人远远大于会写java代码的人&#xff0c;所以假如可以将MR通过sql实现&#xff0c;这个将是一个巨大的市场&#xff0c;FaceBook就这…...

[C++] GDB的调试和自动化检测

文章目录 GDB基本使用1. bazel的debug过程2. line-tables-only的使用 Reference GDB基本使用 参考文档&#xff1a; https://zhuanlan.zhihu.com/p/655719314 1. bazel的debug过程 需要带--copt-g --copt-ggdb选项进行编译 // bazel build --stripnever --copt-g --copt-ggd…...

车机版 Android Audio 框架笔记

车机版Android Audio 框架涉及的知识点很多&#xff0c;在工作中涉及的功能板块也及其繁杂&#xff0c;后面我会根据工作中的一些实际遇到的实例&#xff0c;逐步拆解 Android Audio的知识点&#xff0c;这里从网上整理了一些思维导图&#xff0c;可以做为未来的一个研究方向&a…...

【NLP自然语言处理】深入解析Encoder与Decoder模块:结构、作用与深度学习应用

目录 &#x1f354; Encoder模块 1.1 Encoder模块的结构和作用 1.2 关于Encoder Block 1.3 多头自注意力层(self-attention) &#x1f354; Decoder模块及Add & Norm模块 3.1 Decoder模块介绍 3.2 Add & Norm模块 3.3 位置编码器Positional Encoding 3.4 Decod…...

【JAVA EE】多线程、锁、线程池的使用

目录 创建线程 方法一&#xff1a;继承Thread类来创建一个线程类 方法二&#xff1a;实现Runnable&#xff0c;重写run 线程等待 获取当前线程引用 休眠当前线程 线程的状态 synchronized synchronized的特性 1、互斥 2、刷新内存 死锁 死锁的四个必要条件 避免死…...

云计算:定义、类型及对企业的影响

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 云计算&#xff1a;定义、类型及对企业的影响 云计算&#xff1a;定义、类型及对企业的影响 云计算&#xff1a;定义、类型及对企…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...