LLMs之PDF:zeroX(一款PDF到Markdown 的视觉模型转换工具)的简介、安装和使用方法、案例应用之详细攻略
LLMs之PDF:zeroX(一款PDF到Markdown 的视觉模型转换工具)的简介、安装和使用方法、案例应用之详细攻略
目录
zeroX的简介
1、支持的文件类型
zeroX的安装和使用方法
T1、Node.js 版本:
安装
使用方法
使用文件 URL:
使用本地路径:
示例输出
T2、Python 版本
安装
使用方法
示例输出(来自“azure/gpt-4o-mini”的输出)
zeroX的案例应用
1、测试手写稿
zeroX的简介
Zerox 是一个简单易用的 PDF 到 Markdown 转换工具,它利用视觉模型(例如 OpenAI 的 GPT 模型)来处理文档的 OCR(光学字符识别)并将其转换为 Markdown 格式。 它能够处理各种复杂的文档布局,包括表格、图表等,这得益于其基于视觉模型的处理方式。 Zerox 的核心逻辑是:将输入文件(PDF、docx、图像等)转换为一系列图像,然后将每个图像传递给 GPT 模型,请求生成 Markdown,最后将所有 Markdown 片段聚合起来返回最终结果。 该项目提供了一个在线演示版本:https://getomni.ai/ocr-demo。
官方地址:https://getomni.ai/ocr-demo
GitHub地址:https://github.com/getomni-ai/zerox
1、支持的文件类型
Zerox 使用 libreoffice 和 graphicsmagick 进行文档到图像的转换,支持以下文件类型
["pdf", // Portable Document Format"doc", // Microsoft Word 97-2003"docx", // Microsoft Word 2007-2019"odt", // OpenDocument Text"ott", // OpenDocument Text Template"rtf", // Rich Text Format"txt", // Plain Text"html", // HTML Document"htm", // HTML Document (alternative extension)"xml", // XML Document"wps", // Microsoft Works Word Processor"wpd", // WordPerfect Document"xls", // Microsoft Excel 97-2003"xlsx", // Microsoft Excel 2007-2019"ods", // OpenDocument Spreadsheet"ots", // OpenDocument Spreadsheet Template"csv", // Comma-Separated Values"tsv", // Tab-Separated Values"ppt", // Microsoft PowerPoint 97-2003"pptx", // Microsoft PowerPoint 2007-2019"odp", // OpenDocument Presentation"otp", // OpenDocument Presentation Template
];
zeroX的安装和使用方法
Zerox 提供了 Node.js 和 Python 两种版本的软件包。
T1、Node.js 版本:
安装
使用 npm 安装
npm install zerox
依赖: Zerox 使用 graphicsmagick 和 ghostscript 进行 PDF 到图像的转换。 这些依赖通常会自动安装,但你可能需要手动安装它们。在 Linux 系统上,可以使用以下命令:
sudo apt-get update
sudo apt-get install -y graphicsmagick
使用方法
使用文件 URL:
import { zerox } from "zerox";const result = await zerox({filePath: "https://omni-demo-data.s3.amazonaws.com/test/cs101.pdf",openaiAPIKey: process.env.OPENAI_API_KEY,
});
使用本地路径:
import path from "path";
import { zerox } from "zerox";const result = await zerox({filePath: path.resolve(__dirname, "./cs101.pdf"),openaiAPIKey: process.env.OPENAI_API_KEY,
});
可选参数: zerox 函数接受许多可选参数,用于控制转换过程:
const result = await zerox({// RequiredfilePath: "path/to/file",openaiAPIKey: process.env.OPENAI_API_KEY,// Optionalcleanup: true, // Clear images from tmp after run.concurrency: 10, // Number of pages to run at a time.correctOrientation: true, // True by default, attempts to identify and correct page orientation.maintainFormat: false, // Slower but helps maintain consistent formatting.model: 'gpt-4o-mini' // Model to use (gpt-4o-mini or gpt-4o).outputDir: undefined, // Save combined result.md to a file.pagesToConvertAsImages: -1, // Page numbers to convert to image as array (e.g. `[1, 2, 3]`) or a number (e.g. `1`). Set to -1 to convert all pages.tempDir: "/os/tmp", // Directory to use for temporary files (default: system temp directory).trimEdges: true, // True by default, trims pixels from all edges that contain values similar to the given background colour, which defaults to that of the top-left pixel.
});cleanup: (boolean, 默认 true) 处理完成后是否清理临时文件。
concurrency: (integer, 默认 10) 并发处理的页面数量。
correctOrientation: (boolean, 默认 true) 是否尝试纠正页面方向。
maintainFormat: (boolean, 默认 false) 是否保持一致的格式 (较慢,但对于表格跨页等情况很有用)。
model: (string, 默认 'gpt-4o-mini') 使用的模型 ('gpt-4o-mini' 或 'gpt-4o')。
outputDir: (string, 可选) 保存合并后的 result.md 文件的目录。
pagesToConvertAsImages: (number 或 array, 可选) 需要转换为图像的页码,-1 表示所有页面。
tempDir: (string, 可选) 临时文件的目录。
trimEdges: (boolean, 默认 true) 是否修剪图像边缘。
该maintainFormat选项尝试通过将前一页的输出作为下一页的附加上下文传递,以一致的格式返回 markdown。这需要请求同步运行,因此速度会慢很多。但如果您的文档包含大量表格数据,或者经常有跨页的表格,则此选项非常有用。
Request #1 => page_1_image
Request #2 => page_1_markdown + page_2_image
Request #3 => page_2_markdown + page_3_image
示例输出
{completionTime: 10038,fileName: 'invoice_36258',inputTokens: 25543,outputTokens: 210,pages: [{content: '# INVOICE # 36258\n' +'**Date:** Mar 06 2012 \n' +'**Ship Mode:** First Class \n' +'**Balance Due:** $50.10 \n' +'## Bill To:\n' +'Aaron Bergman \n' +'98103, Seattle, \n' +'Washington, United States \n' +'## Ship To:\n' +'Aaron Bergman \n' +'98103, Seattle, \n' +'Washington, United States \n' +'\n' +'| Item | Quantity | Rate | Amount |\n' +'|--------------------------------------------|----------|--------|---------|\n' +"| Global Push Button Manager's Chair, Indigo | 1 | $48.71 | $48.71 |\n" +'| Chairs, Furniture, FUR-CH-4421 | | | |\n' +'\n' +'**Subtotal:** $48.71 \n' +'**Discount (20%):** $9.74 \n' +'**Shipping:** $11.13 \n' +'**Total:** $50.10 \n' +'---\n' +'**Notes:** \n' +'Thanks for your business! \n' +'**Terms:** \n' +'Order ID : CA-2012-AB10015140-40974 ',page: 1,contentLength: 747}]
}
T2、Python 版本
安装
需要先安装 poppler-utils (确保在系统 PATH 变量中),然后使用 pip 安装
pip install py-zerox
依赖: 依赖于 LiteLLM 库,支持多种视觉模型提供商 (OpenAI, Azure OpenAI, Anthropic, AWS Bedrock 等)。 需要配置相应的环境变量。 请参考 LiteLLM 文档:https://docs.litellm.ai/docs/providers
使用方法
该代码的核心思路是使用pyzerox库中的zerox函数来异步处理PDF文件,通过指定的AI模型提取文本内容,可选择性地处理特定页面,并将结果保存为Markdown文件,同时支持自定义系统提示和不同的AI服务提供商,如OpenAI、Azure OpenAI、Gemini、Anthropic和Vertex AI,通过环境变量或文件加载服务凭证。
zerox 函数的参数与 Node.js 版本类似,但 model 参数需要根据选择的模型提供商和模型名称进行调整。 custom_system_prompt 参数允许自定义系统提示,select_pages 参数允许选择需要处理的页面。
from pyzerox import zerox
import os
import json
import asyncio### Model Setup (Use only Vision Models) Refer: https://docs.litellm.ai/docs/providers ##### placeholder for additional model kwargs which might be required for some models
kwargs = {}## system prompt to use for the vision model
custom_system_prompt = None# to override
# custom_system_prompt = "For the below pdf page, do something..something..." ## example###################### Example for OpenAI ######################
model = "gpt-4o-mini" ## openai model
os.environ["OPENAI_API_KEY"] = "" ## your-api-key###################### Example for Azure OpenAI ######################
model = "azure/gpt-4o-mini" ## "azure/<your_deployment_name>" -> format <provider>/<model>
os.environ["AZURE_API_KEY"] = "" # "your-azure-api-key"
os.environ["AZURE_API_BASE"] = "" # "https://example-endpoint.openai.azure.com"
os.environ["AZURE_API_VERSION"] = "" # "2023-05-15"###################### Example for Gemini ######################
model = "gemini/gpt-4o-mini" ## "gemini/<gemini_model>" -> format <provider>/<model>
os.environ['GEMINI_API_KEY'] = "" # your-gemini-api-key###################### Example for Anthropic ######################
model="claude-3-opus-20240229"
os.environ["ANTHROPIC_API_KEY"] = "" # your-anthropic-api-key###################### Vertex ai ######################
model = "vertex_ai/gemini-1.5-flash-001" ## "vertex_ai/<model_name>" -> format <provider>/<model>
## GET CREDENTIALS
## RUN ##
# !gcloud auth application-default login - run this to add vertex credentials to your env
## OR ##
file_path = 'path/to/vertex_ai_service_account.json'# Load the JSON file
with open(file_path, 'r') as file:vertex_credentials = json.load(file)# Convert to JSON string
vertex_credentials_json = json.dumps(vertex_credentials)vertex_credentials=vertex_credentials_json## extra args
kwargs = {"vertex_credentials": vertex_credentials}###################### For other providers refer: https://docs.litellm.ai/docs/providers ####################### Define main async entrypoint
async def main():file_path = "https://omni-demo-data.s3.amazonaws.com/test/cs101.pdf" ## local filepath and file URL supported## process only some pages or allselect_pages = None ## None for all, but could be int or list(int) page numbers (1 indexed)output_dir = "./output_test" ## directory to save the consolidated markdown fileresult = await zerox(file_path=file_path, model=model, output_dir=output_dir,custom_system_prompt=custom_system_prompt,select_pages=select_pages, **kwargs)return result# run the main function:
result = asyncio.run(main())# print markdown result
print(result)
参数
async def zerox(cleanup: bool = True,concurrency: int = 10,file_path: Optional[str] = "",maintain_format: bool = False,model: str = "gpt-4o-mini",output_dir: Optional[str] = None,temp_dir: Optional[str] = None,custom_system_prompt: Optional[str] = None,select_pages: Optional[Union[int, Iterable[int]]] = None,**kwargs
) -> ZeroxOutput:...
参数
- cleanup(bool,可选):处理后是否清理临时文件。默认为 True。
- concurrency(int,可选):要运行的并发进程数。默认为 10。
- file_path(Optional[str],可选):要处理的 PDF 文件的路径。默认为空字符串。
- keep_format (bool, 可选):是否保留上一页的格式。默认为 False。
- model (str,可选):用于生成补全的模型。默认为“gpt-4o-mini”。请参阅 LiteLLM 提供程序以获取正确的模型名称,因为它可能因提供程序而异。
- output_dir (Optional[str], 可选): 保存 markdown 输出的目录。默认为 None。
- temp_dir (str,可选):存储临时文件的目录,默认为系统临时目录中的某个命名文件夹。如果已经存在,则在 zerox 使用它之前将删除其内容。
- custom_system_prompt (str,可选):模型使用的系统提示,它将覆盖 zerox 的默认系统提示。一般情况下,除非您想要某些特定行为,否则不需要它。设置后,它将发出友好警告。默认为 None。
- select_pages (Optional[Union[int, Iterable[int]]],可选):要处理的页面,可以是单个页码或可迭代的页码,默认为 None
- kwargs(字典,可选):传递给 litellm.completion 方法的附加关键字参数。有关详细信息,请参阅 LiteLLM 文档和完成输入。
返回
- ZeroxOutput:包含模型生成的 markdown 内容以及一些元数据(参见下文)。
示例输出(来自“azure/gpt-4o-mini”的输出)
ZeroxOutput(completion_time=9432.975,file_name='cs101',input_tokens=36877,output_tokens=515,pages=[Page(content='| Type | Description | Wrapper Class |\n' +'|---------|--------------------------------------|---------------|\n' +'| byte | 8-bit signed 2s complement integer | Byte |\n' +'| short | 16-bit signed 2s complement integer | Short |\n' +'| int | 32-bit signed 2s complement integer | Integer |\n' +'| long | 64-bit signed 2s complement integer | Long |\n' +'| float | 32-bit IEEE 754 floating point number| Float |\n' +'| double | 64-bit floating point number | Double |\n' +'| boolean | may be set to true or false | Boolean |\n' +'| char | 16-bit Unicode (UTF-16) character | Character |\n\n' +'Table 26.2.: Primitive types in Java\n\n' +'### 26.3.1. Declaration & Assignment\n\n' +'Java is a statically typed language meaning that all variables must be declared before you can use ' +'them or refer to them. In addition, when declaring a variable, you must specify both its type and ' +'its identifier. For example:\n\n' +'```java\n' +'int numUnits;\n' +'double costPerUnit;\n' +'char firstInitial;\n' +'boolean isStudent;\n' +'```\n\n' +'Each declaration specifies the variable’s type followed by the identifier and ending with a ' +'semicolon. The identifier rules are fairly standard: a name can consist of lowercase and ' +'uppercase alphabetic characters, numbers, and underscores but may not begin with a numeric ' +'character. We adopt the modern camelCasing naming convention for variables in our code. In ' +'general, variables must be assigned a value before you can use them in an expression. You do not ' +'have to immediately assign a value when you declare them (though it is good practice), but some ' +'value must be assigned before they can be used or the compiler will issue an error.\n\n' +'The assignment operator is a single equal sign, `=` and is a right-to-left assignment. That is, ' +'the variable that we wish to assign the value to appears on the left-hand-side while the value ' +'(literal, variable or expression) is on the right-hand-side. Using our variables from before, ' +'we can assign them values:\n\n' +'> 2 Instance variables, that is variables declared as part of an object do have default values. ' +'For objects, the default is `null`, for all numeric types, zero is the default value. For the ' +'boolean type, `false` is the default, and the default char value is `\\0`, the null-terminating ' +'character (zero in the ASCII table).',content_length=2333,page=1)]
)
zeroX的案例应用
该项目提供了 cs101.pdf 作为示例文件。 转换后的 Markdown 输出包含了文档的标题、表格、以及文本内容,准确地反映了原文档的结构和信息。
maintainFormat 参数对于处理表格跨页等复杂布局的文档非常有用。输出结果中包含 completionTime, fileName, inputTokens, outputTokens 和 pages 等元数据信息,其中 pages 数组包含每个页面的 Markdown 内容和页码。
1、测试手写稿
测试地址:https://getomni.ai/ocr-demo
Zerox提供了出色的OCR功能,但这只是整个流程中的第一步。OmniAI可以将文档、文本、图像等转换为结构化数据。只需几分钟即可创建文档流水线,用于批量处理、提取和分类。
文档提取表格
使用Omni,您可以:
>> 结构化数据提取
>> 批量文档处理
>> 实时同步与文档存储库

相关文章:
LLMs之PDF:zeroX(一款PDF到Markdown 的视觉模型转换工具)的简介、安装和使用方法、案例应用之详细攻略
LLMs之PDF:zeroX(一款PDF到Markdown 的视觉模型转换工具)的简介、安装和使用方法、案例应用之详细攻略 目录 zeroX的简介 1、支持的文件类型 zeroX的安装和使用方法 T1、Node.js 版本: 安装 使用方法 使用文件 URL: 使用本地路径&…...
开源数据库 - mysql - mysql-server-8.4(gtid主主同步+ keepalived热切换)部署方案
前置条件 假设主从信息 mysqlhostport主192.168.1.13306从192.168.1.23306vip192.168.1.3 部署流程 导出测试环境表结构与数据 使用mysqldump ./mysqldump -ulzzc -p -S /tmp/mysql3306.sock --single-transaction --database lzzc > databaseLZZCxxxx.sql查看gtid号 …...
Java全栈体系路线
Java全栈体系路线 摘要 Java 是一门广泛应用于企业级开发的语言,具有强大的生态系统和丰富的工具支持。成为一名 Java 全栈开发工程师不仅需要掌握后端开发技能,还需要具备前端开发和数据库管理的能力。本文将详细介绍 Java 全栈开发的学习路线&#x…...
【Unity基础】Unity中如何导入字体?
在Unity中,不能像其他软件一样直接使用字体文件,需要通过FontAssetCreator将其转换成Texture的Asset文件,然后才能使用。 本文介绍了使用FontAssetCreator导入字体的过程,并对其参数设置进行了说明。 Font Asset Creator 是 Uni…...
使用NVIDIA GPU加速FFmpeg视频压制:完全指南
引言 在视频处理领域,FFmpeg是一个强大的工具。结合NVIDIA的硬件编码器NVENC,我们可以实现快速高效的视频压制。本文将详细解析一个实用的视频压制命令,帮助你理解每个参数的作用。 核心命令 ffmpeg -i input.mp4 -vf scale640:360 -c:v h…...
Python学习:scipy是什么?
文章目录 一、Scipy简介二、Scipy的组成部分1. 基础功能:2. 特殊函数:3. 优化:4. 积分:5. 插值:6. 信号处理:7. 图像处理:8. 统计分布:9. 空间数据结构和算法:10. 稀疏矩…...
spark的学习-05
SparkSql 结构化数据与非结构化数据 结构化数据就类似于excel表中的数据(统计的都是结构化的数据)一般都使用sparkSql处理结构化的数据 结构化的文件:JSON、CSV【以逗号分隔】、TSV【以制表符分隔】、parquet、orc 结构化的表:…...
SQL注入(SQL Injection)详解
SQL注入(SQL Injection)是一种代码注入技术,它通过在应用程序的输入字段中插入或“注入”恶意的SQL语句,从而操控后端数据库服务器执行非预期的命令。这种攻击方式常用于绕过应用程序的安全措施,未经授权地访问、修改或…...
深入解析 OpenHarmony 构建系统-2-目录结构与核心组件
引言 OpenHarmony作为一款面向全场景的分布式操作系统,其构建系统在开发过程中扮演着至关重要的角色。本文将详细介绍OpenHarmony构建系统的目录结构和核心组件,帮助开发者更好地理解和使用这一强大的工具。 目录结构概览 以下是OpenHarmony构建系统的目录结构,每个目录和…...
网络安全应急响应(归纳)
目录 一、概述二、理论 系统排查 系统基本信息 windowsLinux用户信息 WindowsLinux启动项:开机系统在前台或者后台运行的程序,是病毒等实现持久化驻留的常用方法。 WindowsLinux任务计划:由于很多计算机都会自动加载“任务计划”,…...
【网络协议栈】网络层(上)网络层的基本理解、IP协议格式、网络层分组(内附手画分析图 简单易懂)
绪论 “It does not matter how slowly you go as long as you do not stop.”。本章是自上而下的进入网络协议栈的第三个篇幅–网络层–,本章我将带你了解网络层,以及网络层中非常重要的IP协议格式和网络层的分片组装问题,后面将持续更新网…...
数据库类型介绍
1. 关系型数据库(RDBMS) 关系型数据库是最常见的一类数据库,它们通过表(Table)来存储数据,表之间通过关系(如主键和外键)来关联。 • MySQL:开源的关系型数据库管理系统&…...
一步一步从asp.net core mvc中访问asp.net core WebApi
"从asp.net core mvc中访问asp.net core WebApi"看到这个标题是不是觉得很绕口啊,但的确就是要讲一讲这样的访问。前面我们介绍了微信小程序访问asp.net core webapi(感兴趣的童鞋可以看看前面的博文有关WEBAPI的搭建),这里我们重点不关心如何…...
linux中kubectl命令使用
一.命令介绍 kubectl 是 Kubernetes 集群管理的命令行工具,用于与 Kubernetes API 交互。你可以通过它来管理和操作 Kubernetes 集群中的资源,如 Pod、Deployment、Service 等。下面是如何在不同操作系统上下载和使用 kubectl 的方法。 二.下载 kubect…...
Linux 系统结构
Linux系统一般有4个主要部分:内核、shell、文件系统和应用程序。内核、shell和文件系统一起形成了基本的操作系统结构,它们使得用户可以运行程序、管理文件并使用系统。 1. linux内核 内核是操作系统的核心,具有很多最基本功能,它…...
ESP32-S3设备智能化升级,物联网无线AI语音交互,让生活更加便捷和有趣
在人工智能和物联网技术的推动下,无线AI语音交互技术正在成为智能设备的新选择。这种技术的发展,不仅改变了我们与设备的沟通方式,更开启了一个新的智能交互方案。 想象一下,通过简单的语音指令,就能控制家中的灯光、…...
Python的函数(补充浅拷贝和深拷贝)
一、定义 函数的定义:实现【特定功能】的代码块。 形参:函数定义时的参数,没有实际意义 实参:函数调用/使用时的参数,有实际意义 函数的作用: 简化代码提高代码重用性便于维护和修改提高代码的可扩展性…...
oracle查询字段类型长度等字段信息
1.查询oracle数据库的字符集 SELECT * FROM NLS_DATABASE_PARAMETERS WHERE PARAMETER NLS_CHARACTERSET; 2.查询字段长度类型 SELECT * FROM user_tab_columns WHERE table_name user AND COLUMN_NAME SNAME 请确保将user替换为您想要查询的表名。sname为字段名 这里的字…...
C语言 | Leetcode C语言题解之第559题N叉树的最大深度
题目: 题解: /*** Definition for a Node.* struct Node {* int val;* int numChildren;* struct Node** children;* };*/int maxDepth(struct Node* root) {if (!root) {return 0;}int depth 0;// 创建空队列const int qCap 10e4 1;str…...
光流法(Optical Flow)
一、简介 光流法(Optical Flow)是一种用于检测图像序列中像素运动的计算机视觉技术。其基于以下假设: 1.亮度恒定性假设:物体在运动过程中,其像素值在不同帧中保持不变。 2.空间和时间上的连续性:相邻像素之…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
