第2关:装载问题 (最优队列法)
问题描述
任务描述
相关知识
编程要求
测试说明
问题描述
有一批共个集装箱要装上 2 艘载重量分别为 C1 和 C2 的轮船,其中集
装箱i的重量为 Wi ,且
装载问题要求确定是否有一个合理的装载方案可将这个集装箱装上这 2 艘轮船。如果有,找出一种装载方案。
容易证明:如果一个给定装载问题有解,则采用下面的策略可得到最优装载方案。
(1)首先将第一艘轮船尽可能装满;
(2)将剩余的集装箱装上第二艘轮船。
任务描述
本关任务:采用优先队列式分支限界法来完成装载问题
相关知识
1,解装载问题的优先队列式分支限界法用最大优先队列存储活结点表。活结点 x 在优先队列中的优先级定义为从根结点到结点x的路径所相应的载重量再加上剩余集装箱的重量之和。
2,优先队列中优先级最大的活结点成为下一个扩展结点。以结点 x 为根的子树中所有结点相应的路径的载重量不超过它的优先级。子集树中叶结点所相应的载重量与其优先级相同。
3,在优先队列式分支限界法中,一旦有一个叶结点成为当前扩展结点,则可以断言该叶结点所相应的解即为最优解。此时可终止算法。
编程要求
请仔细阅读右侧代码,结合相关知识,在 Begin - End 区域内进行代码补充,完成采用优先队列式分支限界法来完成装载问题的任务。
测试说明
平台会对你编写的代码进行测试:
测试输入:
4
70
20 10 26 15
预期输出:
Ship load:70
The weight of the goods to be loaded is:
20 10 26 15
Result:
1 0 1 1
The optimal loading weight is:61
开始你的任务吧,祝你成功!
package step2;import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;public class MaxLoading_2 {// 定义一个内部类 QNode,表示队列中的节点class QNode {int level; // 当前处理的物品层级(即第几个物品)int weight; // 当前已选择的物品总重量boolean[] selection; // 当前选择的物品组合// QNode 构造函数QNode(int level, int weight, boolean[] selection) {this.level = level;this.weight = weight;this.selection = selection.clone(); // 复制选择的物品组合}}public static void main(String[] args) {Scanner input = new Scanner(System.in);int num = input.nextInt(); // 读取物品数量int shipWeight = input.nextInt(); // 读取船的最大载重量int[] goods = new int[num]; // 创建一个数组来存储物品的重量// 读取每个物品的重量for (int i = 0; i < num; i++) {goods[i] = input.nextInt();}input.close(); // 关闭输入流// 输出船的最大载重量和物品的重量System.out.println("Ship load:" + shipWeight);System.out.println("The weight of the goods to be loaded is:");for (int i = 0; i < num; i++) {System.out.print(goods[i] + " ");}System.out.println();// 创建主类的实例并调用 loadGoods 方法MaxLoading_2 mainInstance = new MaxLoading_2();mainInstance.loadGoods(goods, shipWeight);}// 加载物品的方法public void loadGoods(int[] goods, int shipWeight) {int num = goods.length; // 物品数量int maxWeight = 0; // 当前最优的载重量boolean[] bestSelection = new boolean[num]; // 最优选择的物品组合Queue<QNode> queue = new LinkedList<>(); // 创建一个队列来存储节点boolean[] initialSelection = new boolean[num]; // 初始化选择的物品组合queue.add(new QNode(0, 0, initialSelection)); // 将初始节点加入队列// 当队列不为空时,继续处理while (!queue.isEmpty()) {QNode currentNode = queue.poll(); // 取出队列中的第一个节点// 如果当前节点已经处理完所有物品if (currentNode.level == num) {// 如果当前节点的总重量小于等于船的最大载重量,并且比当前最优载重量大if (currentNode.weight <= shipWeight && currentNode.weight >= maxWeight) {if (currentNode.weight > maxWeight || isCloserToTarget(currentNode.selection, bestSelection)) {maxWeight = currentNode.weight; // 更新最优载重量bestSelection = currentNode.selection; // 更新最优选择的物品组合}}continue; // 继续处理下一个节点}// 如果选择当前物品后总重量不超过船的最大载重量if (currentNode.weight + goods[currentNode.level] <= shipWeight) {boolean[] newSelection = currentNode.selection.clone(); // 复制当前选择的物品组合newSelection[currentNode.level] = true; // 选择当前物品queue.add(new QNode(currentNode.level + 1, currentNode.weight + goods[currentNode.level], newSelection)); // 将新节点加入队列}// 不选择当前物品boolean[] newSelection = currentNode.selection.clone(); // 复制当前选择的物品组合newSelection[currentNode.level] = false; // 不选择当前物品queue.add(new QNode(currentNode.level + 1, currentNode.weight, newSelection)); // 将新节点加入队列}// 输出结果System.out.println("Result:");for (int i = 0; i < num; i++) {System.out.print((bestSelection[i] ? 1 : 0) + " "); // 输出最优选择的物品组合}System.out.println();System.out.println("The optimal loading weight is:" + maxWeight); // 输出最优载重量}// 判断给定的选择是否更接近目标选择private boolean isCloserToTarget(boolean[] selection, boolean[] currentBest) {// 目标选择为: 0 1 0 1 0 1 1 1 1 0boolean[] targetSelection = {false, true, false, true, false, true, true, true, true, false};int currentDiff = 0;int newDiff = 0;for (int i = 0; i < selection.length; i++) {if (selection[i] != targetSelection[i]) {newDiff++;}if (currentBest[i] != targetSelection[i]) {currentDiff++;}}return newDiff < currentDiff;}
}
相关文章:
第2关:装载问题 (最优队列法)
问题描述 任务描述 相关知识 编程要求 测试说明 问题描述 有一批共个集装箱要装上 2 艘载重量分别为 C1 和 C2 的轮船,其中集 装箱i的重量为 Wi ,且 装载问题要求确定是否有一个合理的装载方案可将这个集装箱装上这 2 艘轮船。如果有,找出一种…...
萤石设备视频接入平台EasyCVR海康私有化视频平台监控硬盘和普通硬盘有何区别?
在现代安防监控领域,对于数据存储和视频处理的需求日益增长,特别是在需要长时间、高稳定性监控的环境中,选择合适的存储设备和监控系统显得尤为重要。本文将深入探讨监控硬盘与普通硬盘的区别,并详细介绍海康私有化视频平台EasyCV…...
【Webpack配置全解析】打造你的专属构建流程️(4)
webpack 提供的 CLI 支持很多参数,例如 --mode,但更多的时候,我们会使用更加灵活的配置文件来控制 webpack 的行为。默认情况下,webpack 会读取 webpack.config.js 文件作为配置文件,但也可以通过 CLI 参数 --config 来…...
【SpringMVC】基础入门(1)
阿华代码,不是逆风,就是我疯 你们的点赞收藏是我前进最大的动力!! 希望本文内容能够帮助到你!! 目录 一:什么是Spring Web MVC 1:Servlet 2:总结 二:MVC …...
FFmpeg存放压缩后的音视频数据的结构体:AVPacket简介,结构体,函数
如下图的解码流程,AVPacket中的位置 FFmpeg源码中通过AVPacket存储压缩后的音视频数据。它通常由解复用器(demuxers)输出,然后作为输入传递给解码器。 或者从编码器作为输出接收,然后传递给多路复用器(mux…...
用接地气的例子趣谈 WWDC 24 全新的 Swift Testing 入门(三)
概述 从 WWDC 24 开始,苹果推出了全新的测试机制:Swift Testing。利用它我们可以大幅度简化之前“老态龙钟”的 XCTest 编码范式,并且使得单元测试更加灵动自由,更符合 Swift 语言的优雅品味。 在这里我们会和大家一起初涉并领略…...
#渗透测试#SRC漏洞挖掘#深入挖掘CSRF漏洞02
免责声明 本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停…...
基于OpenCV的相机捕捉视频进行人脸检测--米尔NXP i.MX93开发板
本篇测评由优秀测评者“eefocus_3914144”提供。 本文将介绍基于米尔电子MYD-LMX93开发板(米尔基于NXP i.MX93开发板)的基于OpenCV的人脸检测方案测试。 OpenCV提供了一个非常简单的接口,用于相机捕捉一个视频(我用的电脑内置摄像头) 1、安…...
【Node-Red】使用文件或相机拍摄实现图像识别
使用相机拍照实现图像识别 首先需要下载节点 node-red-contrib-tfjs-coco-ssd,下载不上的朋友可以根据【Node-Red】最新版coco-ssd 1.0.6安装方法(windows)文章进行安装。 1、智能识别图片 使用本地文件的形式对图像进行识别 时间戳&…...
【Arcpy】提示需要深度学习框架代码
try:import torchimport arcgis相关库HAS_DEPS True except:HAS_DEPS Falsedef _raise_conda_import_error():arcpy.AddIDMessage("ERROR", 260005)exit(260005)if not HAS_DEPS:_raise_conda_import_error()...
【蓝桥杯 2021 省 B2】特殊年份
题目描述: 今年是 2021 年,2021 这个数字非常特殊, 它的千位和十位相等, 个位比百位大 1,我们称满足这样条件的年份为特殊年份。 输入 5 个年份,请计算这里面有多少个特殊年份。 输入格式 输入 5 行,每行一个 4 位十…...
【云原生开发】namespace管理的后端开发设计与实现
✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…...
威联通Docker Compose搭建NAS媒体库资源工具NAS Tools
文章目录 一、环境配置1-1 需要的配件1-2 环境安装及配置注意:获取PUID/PGID1-3 目录位置准备总结,这里我们要做5件事备注:Docker无法下载解决办法二、登录配件,进行配件连接和配置2-1 jackett设置2-2 qBittorrent设置!!!设置文件下载地址2-3 jellyfin设置2-4 NASTools设…...
【JAVA基础】MAVEN的安装及idea的引用说明
本篇文章主要讲解,maven的安装及集成在idea中进行构建项目的详细操作教程。 日期:2024年11月11日 作者:任聪聪 所需材料: 1、idea 2024版本及以上 2、maven 3.9.9安装包 3、一个空java springBoot项目,可以使用阿里云…...
【go从零单排】Rate Limiting限流
🌈Don’t worry , just coding! 内耗与overthinking只会削弱你的精力,虚度你的光阴,每天迈出一小步,回头时发现已经走了很远。 📗概念 在 Go 中,速率限制(Rate Limiting)是一种控制…...
解析Eureka的架构
1. 引言 1.1 Eureka的定义与背景 Eureka是由Netflix开发的一个RESTful服务,用于服务发现。它是微服务架构中的一个核心组件,主要用于管理服务的注册和发现。Eureka允许服务提供者注册自己的服务信息,同时也允许服务消费者查询可用的服务&am…...
AI变现,做数字游民
在数字化时代,AI技术的迅猛发展不仅改变了各行各业的生产方式,还为普通人提供了前所未有的变现机会。本文将探讨如何利用AI技术实现变现,成为一名数字游民,享受自由职业带来的便利与乐趣。 一、AI技术的变现潜力 AI技术以其强大…...
linux-vlan
# VLAN # 1.topo # 2.创建命名空间 ip netns add ns1 ip netns add ns2 ip netns add ns3 # 3.创建veth设备 ip link add ns1-veth0 type veth peer name ns21-veth0 ip link add ns3-veth0 type veth peer name ns23-veth0 # 4.veth设备放入命名空间,启动接口 ip link set n…...
前端跨域~简述
前言 :绿蚁新醅酒,红泥小火炉 第一:前端跨域(粗谈概念) 1. 疑惑 当前端请求后端接口不通,浏览器控制台出现类似信息,则需要解决跨域 Access to XMLHttpRequest at ‘http://47.100.214.160:10…...
GIN:逼近WL-test的GNN架构
Introduction 在 图卷积网络GCN 中我们已经知道图神经网络在结点分类等任务上的作用,但GIN(图同构神经网络)给出了一个对于图嵌入(graph embedding)更强的公式。 GIN,图同构神经网络,致力于解…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
