springboot苍穹外卖实战:十一:复盘总结
近期在整理草稿区,故放出此贴。
server模块需要导入对common模块的依赖
<dependency><groupId>org.example</groupId><artifactId>sky-common</artifactId><version>1.0-SNAPSHOT</version></dependency>
我现在有个三个子模块组成的工程,其中一个模块A的方法tt的返回类型是模块B中的类,且方法tt的参数的类型是模块C中的类,为什么对于参数的类型可以直接导入类,但是一定要引入模块B的依赖呢?
综上所述,对于返回类型是其他模块中的类的情况,需要在编译时获取到该类的定义,因此需要在当前模块的工程配置中添加对应模块的依赖。而对于参数类型,只有在方法调用时才需要使用到参数类型的定义,因此只需要在方法中使用import语句导入类即可,无需添加额外的依赖。
Employee数据库表和DTO表和VO表
注意只要是放在pojo包下面的都要implements Serializable
employee表为员工表,用于存储商家内部的员工信息。具体表结构如下:
| 字段名 | 数据类型 | 说明 | 备注 |
|---|---|---|---|
| id | bigint | 主键 | 自增 |
| name | varchar(32) | 姓名 | |
| username | varchar(32) | 用户名 | 唯一 |
| password | varchar(64) | 密码 | |
| phone | varchar(11) | 手机号 | |
| sex | varchar(2) | 性别 | |
| id_number | varchar(18) | 身份证号 | |
| status | int | 账号状态 | 1正常 0锁定 |
| create_time | datetime | 创建时间 | |
| update_time | datetime | 最后修改时间 | |
| create_user | bigint | 创建人id | |
| update_user | bigint | 最后修改人id |
EmployeeLoginDTO结构为:
@ApiModel(description = “员工登录时传递的数据模型”)
public class EmployeeLoginDTO implements Serializable {
@ApiModelProperty("用户名")
private String username;@ApiModelProperty("密码")
private String password;
}
EmployeeLoginVO结构为:
@Data
@ApiModel(description = "员工登录返回的数据格式")
public class EmployeeLoginVO implements Serializable {@ApiModelProperty("主键值")private Long id;@ApiModelProperty("用户名")private String userName;@ApiModelProperty("姓名")private String token;
}
注意前端返回的DTO一般都要用@Data
ApiOperationProperty
给属性增加注解用的。
为什么这个代码明明用了@Data,但是我在其他地方用不了这个的getter方法?
https://juejin.cn/s/%E6%9C%AA%E9%85%8D%E7%BD%AEspringboot%E9%85%8D%E7%BD%AE%E6%B3%A8%E8%A7%A3%E5%A4%84%E7%90%86%E5%99%A8
未配置springboot配置注解处理器
相关文章:
springboot苍穹外卖实战:十一:复盘总结
近期在整理草稿区,故放出此贴。 server模块需要导入对common模块的依赖 <dependency><groupId>org.example</groupId><artifactId>sky-common</artifactId><version>1.0-SNAPSHOT</version></dependency>我现在有个…...
基于Python的药房管理系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏:…...
chat2db数据库图形化工具
数据库图形化工具 DataGrip:由 JetBrains 公司开发,是开发者中广为人知的数据库管理工具,功能强大且支持多种数据库。DBeaver:一款开源的数据库管理工具,虽然相对 DataGrip 知名度稍低,但在开发者社区中也…...
弱口令整改方案:借助双因子认证加强账号密码安全
弱口令整改方案可借助宁盾 2FA双因子身份认证来解决。双因子认证(也称双因素身份认证)是一种安全认证机制,通过结合两个及以上不同的身份验证因子,提高企业用户在办公、研发、生产、运维场景下的的账号密码安全性。它可以有效防止…...
动态代理的优势是什么?
在数据采集的世界里,效率和稳定性是衡量代理IP服务优劣的关键指标。动态代理,作为一种高效的网络工具,正逐渐成为企业和开发者的首选。今天,我们就来聊聊动态代理的优势,以及它如何成为数据采集的高效之选。 动态代理…...
将大型语言模型(如GPT-4)微调用于文本续写任务
要将大型语言模型(如GPT-4)微调用于文本续写任务,构造高质量的训练数据至关重要。以下是如何构造训练数据的详细步骤: 1. 数据收集: 多样性: 收集多种类型的文本,包括小说、新闻、论文、博客等…...
引入了JUnit框架 却报错找不到:java.lang.ClassNotFoundException
完整报错如下: Internal Error occurred. org.junit.platform.commons.JUnitException: TestEngine with ID junit-jupiter failed to discover tests at org.junit.platform.launcher.core.EngineDiscoveryOrchestrator.discoverEngineRoot(EngineDiscoveryOrc…...
深度学习:tensor的定义与维度
tensor的定义与维度 Tensor的定义与维度 Tensor是一个多维数组,用于在一般化的n维空间中表示数据和操作。在深度学习框架中,如TensorFlow或PyTorch,Tensor是基础数据结构,用来存储输入、输出、权重等信息。下面是Tensor不同维度…...
基于Python的膳食健康系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏:…...
FFmpeg 4.3 音视频-多路H265监控录放C++开发十三:将AVFrame转换成AVPacket。视频编码原理.编码相关api
前提: 从前面的学习我们知道 AVFrame中是最原始的 视频数据,这一节开始我们需要将这个最原始的视频数据 压缩成 AVPacket数据, 我们前面,将YUV数据或者 RGBA 数据装进入了 AVFrame里面,并且在SDL中显示。 也就是说&…...
算法——移除元素(leetcode27)
对于移除元素这道题来讲,我首先想到的还是双指针,根据题目要求我们需要在给定的一组数组中找出与目标值不同的元素数量并且将与目标值不同的元素全部移至数组左边右边则不需关注数组元素的大小,我们利用两个指针一个指向数组首部位置(左指针&…...
『OpenCV-Python』安装以及图像的读取、显示、保存
点赞 + 关注 + 收藏 = 学会了 OpenCV 是一个开源的计算机视觉库,广泛应用于图像处理、机器学习和实时计算机视觉应用。比如图像和视频的滤镜和降噪、物体检测、人脸识别、证件号识别、车牌识别等应用。当然,也有其他工具可以对这些领域做支持,但本专栏是介绍 OpenCV 的,所…...
python开发桌面应用(跨平台) 全流程
前言 之前开发一些软件,亚马逊商品分析相关软件,但是基本上是通过程序猿控制台命令启动,同时在启动之前,还要进行程序依赖包,这对于非开发人员而言,简直是一种灾难, 为了让软件对于小白更加易用, 打算将其封装成应用程序(跨平台), 下面带大家一起完成python开发桌面应用的三步…...
el-table-column prop值根据数组获取
方法一: 可以给el-table-column添加一个属性:formatter,代码如下: 这里是因为多个列都需要同样的计算,所以使用column.property获取属性,不然可以直接row.属性 方法二: 直接在template scope …...
MySQL_聚合函数分组查询
上篇复习: 设计数据库时的三大范式1.第一范式,一行数据中每一列不可再分 关系型数据库必须要满足第一范式,设计表的时候,如果每一列都可以用SQL规定的数据类型描述,就天然满足第一范式. 2.第二范式,在第一…...
PPT 制作神器!Markdown 轻松变幻灯片!
做过幻灯片的朋友们都知道,PPT 的制作常常是费时费力的工作。尤其是需要不断调整布局和设计的时候。 而现在,GitHub 上有一款开源免费的 PPT 制作工具 moffee,能够极大地简化这一过程。你只需通过简单的 Markdown 编写内容,即可快…...
一七八、Node.js PM2使用介绍
PM2 是一个强大的生产级 Node.js 进程管理器,提供了自动重启、负载均衡和进程监控等功能。适用于开发和生产环境,简化了 Node.js 应用程序的管理和维护。 PM2 安装 1. 使用 npm 安装 PM2 npm i -g pm2latest-g:全局安装。latest:…...
基于CSU18M92芯片的蓝牙体重秤方案
传统体重秤只有一个数据的显示功能,将需称重物体放置在体重秤上,体重秤显示当前物体的数据,物体移开,数据消失,体重秤没有数据记录、存储、分析功能。智能体重秤与传统体重秤相比,可通过低功耗蓝牙与手机AP…...
深度学习经典模型之VGGNet
1 VGGNet 1.1 模型介绍 VGGNet是由牛津大学视觉几何小组(Visual Geometry Group, VGG)提出的一种深层卷积网络结构,他们以7.32%的错误率赢得了2014年ILSVRC分类任务的亚军(冠军由GoogLeNet以6.65%的错误率夺得)和…...
Axure网络短剧APP端原型图,竖屏微剧视频模版40页
作品概况 页面数量:共 40 页 使用软件:Axure RP 9 及以上,非软件无源码 适用领域:短剧、微短剧、竖屏视频 作品特色 本作品为网络短剧APP的Axure原型设计图,定位属于免费短剧软件,类似红果短剧、河马剧场…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
