当前位置: 首页 > news >正文

C++实现用户分组--学习

第一步实现:ETL的设计分三部分:数据抽取(Data Extraction)、数据的清洗转换(Data Transformation)、数据的加载(Data Loading).

构建一个数据容器类,其中包含转换后的MNIST手写数据。还实现了一个数据处理程序,该数据处理程序将提取并转换数据以供将来的算法实现使用。

#ifndef __DATA_H
#define __DATA_H#include <iostream>
#include <vector>
#include "stdint.h"
#include "stdio.h"// 数据类
class data
{std::vector<uint8_t>* feature_vector; // 特征向量uint8_t label; // 标签int enum_label; // 枚举标签 A->1, B->2, C->3, D->4, E->5, F->6, G->7, H->8, I->9, J->10public:data(); // 构造函数~data(); // 析构函数void set_feature_vector(std::vector<uint8_t> *); // 设置特征向量void append_to_feature_vector(uint8_t); // 向特征向量追加数据void set_label(uint8_t); // 设置标签void set_enum_label(int); // 设置枚举标签int get_feature_vector_size(); // 获取特征向量大小uint8_t get_label(); // 获取标签uint8_t get_enumerated_label(); // 获取枚举标签std::vector<uint8_t>* get_feature_vector(); // 获取特征向量};#endif

这段代码定义了一个名为 data 的类,用于处理特征向量和标签。首先,代码使用了头文件保护机制,通过 #ifndef#define 和 #endif 来防止重复包含头文件 data.hpp

在 data 类中,有三个私有成员变量:feature_vector 是一个指向 std::vector<uint8_t> 的指针,用于存储特征向量;label 是一个 uint8_t 类型的变量,用于存储标签;enum_label 是一个整数,用于存储枚举标签,注释中说明了不同字符对应的整数值(例如,A 对应 1,B 对应 2,依此类推)。

在公共成员函数部分,data 类提供了一些方法来操作和访问这些成员变量:

  • void set_feature_vector(std::vector<uint8_t> *):设置特征向量的指针。
  • void append_to_feature_vector(uint8_t):向特征向量中追加一个 uint8_t 类型的值。
  • void set_label(uint8_t):设置标签。
  • void set_enum_label(int):设置枚举标签。

此外,还有一些方法用于获取成员变量的值:

  • int get_feature_vector_size():获取特征向量的大小。
  • uint8_t get_label():获取标签。
  • uint8_t get_enumerated_label():获取枚举标签。
  • std::vector<uint8_t>* get_feature_vector():获取特征向量的指针。

这些方法使得 data 类能够灵活地操作和访问特征向量和标签,适用于需要处理大量数据的场景。

#include "data.hpp"data::data(){feature_vector = new std::vector<uint8_t>;
}data::~data()
{delete feature_vector;
}void data::set_feature_vector(std::vector<uint8_t> *vect)
{feature_vector = vect;
}void data::append_to_feature_vector(uint8_t val)
{feature_vector->push_back(val);
}void data::set_label(uint8_t val)
{label = val;
}void data::set_enum_label(int val)
{enum_label = val;
}int data::get_feature_vector_size()
{return feature_vector->size();
}uint8_t data::get_label()
{return label;
}
uint8_t data::get_enumerated_label()
{return enum_label;
}std::vector<uint8_t>* data::get_feature_vector()
{return feature_vector;
}

这段代码实现了 data 类的构造函数、析构函数以及多个成员函数。首先,代码包含了头文件 data.hpp,以确保类的声明可用。

构造函数 data::data() 初始化了 feature_vector,为其分配了一个新的 std::vector<uint8_t> 对象。析构函数 data::~data() 则负责释放该内存,防止内存泄漏。

set_feature_vector 方法接受一个指向 std::vector<uint8_t> 的指针,并将其赋值给 feature_vectorappend_to_feature_vector 方法向 feature_vector 中追加一个 uint8_t 类型的值。

set_label 和 set_enum_label 方法分别设置 label 和 enum_label 的值。

get_feature_vector_size 方法返回 feature_vector 的大小。get_label 和 get_enumerated_label 方法分别返回 label 和 enum_label 的值。最后,get_feature_vector 方法返回 feature_vector 的指针。

总体来说,这段代码实现了 data 类的基本功能,使其能够管理和操作特征向量和标签。

2.处理数据

#ifndef __DATA_HANDLER_H
#define __DATA_HANDLER_H#include<fstream>
#include "stdint.h"
#include"data.hpp"
#include<vector>
#include<string>
#include<map>
#include<unordered_set>// 数据处理类
class data_handler
{std::vector<data *> *data_array; // 数据数组std::vector<data *> *training_data; // 训练数据std::vector<data *> *testing_data; // 测试数据std::vector<data *> *validation_data; // 验证数据int num_classes; // 类别数量int feature_vector_size; // 特征向量大小std::map<uint8_t, int> class_map; // 类别映射const double TRAIN_SET_PERCENTAGE = 0.75; // 训练集比例const double TEST_SET_PERCENTAGE = 0.20; // 测试集比例const double VALIDATION_SET_PERCENTAGE = 0.05; // 验证集比例public:data_handler(); // 构造函数~data_handler(); // 析构函数void read_feature_vector(std::string path); // 读取特征向量void read_label_vector(std::string path); // 读取标签向量void split_data(); // 分割数据void count_classes(); // 统计类别数量uint32_t convert_to_little_endian(const unsigned char* bytes); // 转换为小端序std::vector<data *> *get_training_data(); // 获取训练数据std::vector<data *> *get_testing_data(); // 获取测试数据std::vector<data *> *get_validation_data(); // 获取验证数据};#endif

这个类名为 data_handler,用于处理数据集的读取、分割和分类等操作。以下是对该类的详细解释:

成员变量

  1. std::vector<data *> *data_array

    • 指向一个 std::vector 容器的指针,该容器存储了所有的数据对象的指针。
  2. std::vector<data *> *training_data

    • 指向一个 std::vector 容器的指针,该容器存储了训练数据集的数据对象的指针。
  3. std::vector<data *> *testing_data

    • 指向一个 std::vector 容器的指针,该容器存储了测试数据集的数据对象的指针。
  4. std::vector<data *> *validation_data

    • 指向一个 std::vector 容器的指针,该容器存储了验证数据集的数据对象的指针。
  5. int num_classes

    • 存储数据集中类别的数量。
  6. int feature_vector_size

    • 存储特征向量的大小。
  7. std::map<uint8_t, int> class_map

    • 一个映射,用于将类别标签(uint8_t 类型)映射到整数值。
  8. const double TRAIN_SET_PERCENTAGE

    • 常量,表示训练数据集所占的比例,值为 0.75。
  9. const double TEST_SET_PERCENTAGE

    • 常量,表示测试数据集所占的比例,值为 0.20。
  10. const double VALIDATION_SET_PERCENTAGE

    • 常量,表示验证数据集所占的比例,值为 0.05。

构造函数和析构函数

  1. data_handler()

    • 构造函数,用于初始化 data_handler 对象。
  2. ~data_handler()

    • 析构函数,用于释放 data_handler 对象所占用的资源。

成员函数

  1. void read_feature_vector(std::string path)

    • 从指定路径读取特征向量数据。
  2. void read_label_vector(std::string path)

    • 从指定路径读取标签数据。
  3. void split_data()

    • 将数据集分割为训练集、测试集和验证集。
  4. void count_classes()

    • 统计数据集中各个类别的数量。
  5. uint32_t convert_to_little_endian(const unsigned char* bytes)

    • 将字节数组转换为小端格式的 uint32_t 类型。
  6. std::vector<data *> *get_training_data()

    • 返回指向训练数据集的指针。
  7. std::vector<data *> *get_testing_data()

    • 返回指向测试数据集的指针。
  8. std::vector<data *> *get_validation_data()

    • 返回指向验证数据集的指针。

总结

data_handler 类提供了一系列方法,用于读取数据、分割数据集、统计类别数量以及获取训练集、测试集和验证集。通过这些方法,可以方便地管理和处理数据集,适用于机器学习和数据分析等场景。

相关文章:

C++实现用户分组--学习

第一步实现&#xff1a;ETL的设计分三部分&#xff1a;数据抽取(Data Extraction)、数据的清洗转换(Data Transformation)、数据的加载(Data Loading). 构建一个数据容器类&#xff0c;其中包含转换后的MNIST手写数据。还实现了一个数据处理程序&#xff0c;该数据处理程序将提…...

鸿蒙华为商城APP案例

模拟器运行效果如下&#xff1a; 鸿蒙版APP-华为商城-演示视频...

回首遥望-C++内存对齐的思考

这一章节主要巩固一下学习C/C时内存对齐相关的内容&#xff01; 文章目录 什么是内存对齐&#xff1f;为什么要有内存对齐&#xff1f;如何进行内存对齐&#xff1f;致谢&#xff1a; 什么是内存对齐&#xff1f; 这里不提及一堆啰嗦概念&#xff0c;就结合实际出发&#xff0…...

力扣 LeetCode 704. 二分查找(Day1:数组)

解题思路&#xff1a; 二分查找主要分为[ left , right ]左闭右闭和[ left , right )左闭右开两种 此处采取[ left , right ]左闭右闭写法 注意&#xff1a; 1. right的初始化取值 2. while中取等 3. right mid -1 ; class Solution {public int search(int[] nums, i…...

【Mode Management】AUTOSAR架构下唤醒源检测函数EcuM_CheckWakeup详解

目录 前言 正文 1.AUTOSAR标准描述 1.1 EcuM_CheckWakeup用来干什么 1.2 EcuM_CheckWakeup在哪里被调用 1.3 EcuM_CheckWakeup的使用场景 1.3.1 GPT中断检测唤醒源 1.3.2 EcuM轮询GPT检测唤醒源 1.3.3 ICU中断检测唤醒源 1.3.4 其他 2.AUTOSR工具相关配置 3.唤醒源…...

Zabbix基础信息概述

1.Zabbix概述 Zabbix 是一款能够监控各种网络参数以及服务器健康性和完整性的软件。Zabbix 使用灵活的通知机制&#xff0c;允许用户为几乎任何事件配置基于邮件的告警&#xff0c;这样可以快速反馈服务器的问题。基于已存储的数据&#xff0c;Zabbix 提供了出色的报告和数据可…...

SpringBoot(十二)SpringBoot配置redis

接下来我要实现的webscoket即时聊天中需要使用到redis,我先在项目中配置一下redis。 我这里再windows中做测试,关于redis的安装请移步《Redis(三)Windows系统安装redis》 一:在pom.xml中添加依赖 <!-- springboot redis start --><dependency><grou…...

Pycharm安装

Pycharm安装 返回主目录Pycharm安装1. Pycharm下载PyCharm官网下载地址下载安装包 2. Pycharm安装第一步&#xff1a;双击安装包第二步&#xff1a;进入安装程序第三步&#xff1a;选择安装路径第四步&#xff1a;选择安装选项第五步&#xff1a;安装第六步&#xff1a;完成安装…...

OpenAI大改下代大模型方向,scaling law撞墙?AI社区炸锅了

有研究预计&#xff0c;如果 LLM 保持现在的发展势头&#xff0c;预计在 2028 年左右&#xff0c;已有的数据储量将被全部利用完。届时&#xff0c;基于大数据的大模型的发展将可能放缓甚至陷入停滞。 来自论文《Will we run out of data? Limits of LLM scaling based on hum…...

技术整合与生态构建:Lyft与Mobileye引领自动驾驶新纪元

在科技日新月异的今天&#xff0c;自动驾驶技术正逐渐从科幻电影走进现实生活&#xff0c;成为出行服务领域的一股不可忽视的力量。近日&#xff0c;北美网约车巨头Lyft与自动驾驶技术领先者Mobileye宣布联手合作&#xff0c;共同推动自动驾驶汽车出行服务的广泛商业化进程。此…...

利用huffman树实现对文件A先编码后解码

利用huffman树实现对文件A先编码后解码&#xff0c;范围为ASCII码0-255的值&#xff0c;如何解决特殊符号问题是一个难点&#xff0c;注意应使用unsigned char存储数据&#xff0c;否则ASCII码128-255的值可能会出问题&#xff1a; #define _CRT_SECURE_NO_WARNINGS 1 #includ…...

第三十九章 基于VueCli自定义创建项目

目录 1. 选择创建模式 2. 选择需要的功能 3. 选择历史模式还是哈希模式 ​4.CSS预处理器 5. 选择ESLint规则 6. 开始创建项目 ​7. 自定义项目最终结构 1. 选择创建模式 输入创建的项目名&#xff0c;创建项目&#xff1a; 这里选择自定义模式&#xff1a; 2. 选择需要…...

网页web无插件播放器EasyPlayer.js点播播放器遇到视频地址播放不了的现象及措施

在数字媒体时代&#xff0c;视频点播已成为用户获取信息和娱乐的重要方式。EasyPlayer.js作为一款流行的点播播放器&#xff0c;以其强大的功能和易用性受到广泛欢迎。然而&#xff0c;在使用过程中&#xff0c;用户可能会遇到视频地址无法播放的问题&#xff0c;这不仅影响用户…...

LLaMA-Factory学习笔记(1)——采用LORA对大模型进行SFT并采用vLLM部署的全流程

该博客是我根据自己学习过程中的思考与总结来写作的&#xff0c;由于初次学习&#xff0c;可能会有错误或者不足的地方&#xff0c;望批评与指正。 1. 安装 1.1 LLaMA-Factory安装 安装可以参考官方 readme &#xff08;https://github.com/hiyouga/LLaMA-Factory/blob/main/…...

PHP和Python脚本的性能监测方案

目录 1. 说明 2. PHP脚本性能监测方案 2.1 安装xdebug 2.2 配置xdebug.ini 2.3 命令行与VS Code中使用 - 命令行 - VS Code 2.4 QCacheGrind 浏览 3. Python脚本性能监测方案 3.1 命令行 4. 工具 5.参考 1. 说明 获取我们的脚本程序运行时的指标&#xff0c;对分析…...

C语言实现数据结构之堆

文章目录 堆一. 树概念及结构1. 树的概念2. 树的相关概念3. 树的表示4. 树在实际中的运用&#xff08;表示文件系统的目录树结构&#xff09; 二. 二叉树概念及结构1. 概念2. 特殊的二叉树3. 二叉树的性质4. 二叉树的存储结构 三. 二叉树的顺序结构及实现1. 二叉树的顺序结构2.…...

战略共赢 软硬兼备|云途半导体与知从科技达成战略合作

2024年11月5日&#xff0c;江苏云途半导体有限公司&#xff08;以下简称“云途”或“云途半导体”&#xff09;与上海知从科技有限公司&#xff08;以下简称“知从科技”&#xff09;达成战略合作&#xff0c;共同推动智能汽车领域高端汽车电子应用的开发。 云途半导体与知从科…...

python:用 sklearn 构建 K-Means 聚类模型

pip install scikit-learn 或者 直接用 Anaconda3 sklearn 提供了 preprocessing 数据预处理模块、cluster 聚类模型、manifold.TSNE 数据降维模块。 编写 test_sklearn_3.py 如下 # -*- coding: utf-8 -*- """ 使用 sklearn 构建 K-Means 聚类模型 "&…...

elementUI中2个日期组件实现开始时间、结束时间(禁用日期面板、控制开始时间不能超过结束时间的时分秒)实现方案

没有使用selectableRange 禁用时分秒&#xff0c;是因为他会禁止每天的时分秒。 我们需要解决的是当开始时间、结束时间是同一天时&#xff0c; 开始时间不能超过结束时间。 如果直接清空&#xff0c;用户体验不好。所以用watch监听赋值&#xff0c;当前操作谁&#xff0c;它不…...

Oracle 聚集因子factor clustering

文章目录 聚集因子(Factor clustering)举例说明查询聚集因子聚集因子的优化结论 最近发现突然忘记聚集因子的原理了&#xff0c;故整理记录一下 聚集因子(Factor clustering) 在Oracle中&#xff0c;聚集因子&#xff08;Clustering Factor&#xff09;用于衡量数据在表中存储…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用

中达瑞和自2005年成立以来&#xff0c;一直在光谱成像领域深度钻研和发展&#xff0c;始终致力于研发高性能、高可靠性的光谱成像相机&#xff0c;为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

React核心概念:State是什么?如何用useState管理组件自己的数据?

系列回顾&#xff1a; 在上一篇《React入门第一步》中&#xff0c;我们已经成功创建并运行了第一个React项目。我们学会了用Vite初始化项目&#xff0c;并修改了App.jsx组件&#xff0c;让页面显示出我们想要的文字。但是&#xff0c;那个页面是“死”的&#xff0c;它只是静态…...

算法250609 高精度

加法 #include<stdio.h> #include<iostream> #include<string.h> #include<math.h> #include<algorithm> using namespace std; char input1[205]; char input2[205]; int main(){while(scanf("%s%s",input1,input2)!EOF){int a[205]…...

VASP软件在第一性原理计算中的应用-测试GO

VASP软件在第一性原理计算中的应用 VASP是由维也纳大学Hafner小组开发的一款功能强大的第一性原理计算软件&#xff0c;广泛应用于材料科学、凝聚态物理、化学和纳米技术等领域。 VASP的核心功能与应用 1. 电子结构计算 VASP最突出的功能是进行高精度的电子结构计算&#xff…...