羲和数据集收集器1.3
为了实现所要求的功能,我们需要进一步完善代码,使其能够处理多种格式的输入文件,并生成符合要求的 JSON 格式的输出文件。具体来说,我们完善了以下内容:
增强 extract_qa_pairs_from_content 函数:使其能够识别和处理不同格式的 QA 对。
确保输出文件的格式正确:每个 QA 对占一行,且格式为 JSON。
以下是完善后的代码:
import os
import json
import fitz # PyMuPDF
import docx
import re
import tkinter as tk
from tkinter import filedialog, messagebox, simpledialog
import logging# 设置日志记录
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')def clean_text(text):""" 清理文本,去除多余的空白字符和标点符号,替换影响数据集的特殊字符 """text = re.sub(r'\s+', ' ', text) # 合并多个空白字符text = re.sub(r'[^\w\s]', '', text) # 去除标点符号text = re.sub(r'"', "'", text) # 替换双引号text = re.sub(r'\\', '/', text) # 替换反斜杠return text.strip()def extract_qa_pairs_from_txt(file_path):with open(file_path, 'r', encoding='utf-8') as f:content = f.read()content = clean_text(content)qa_pairs = extract_qa_pairs_from_content(content)return qa_pairsdef extract_qa_pairs_from_docx(file_path):doc = docx.Document(file_path)content = []for para in doc.paragraphs:content.append(para.text)for table in doc.tables:for row in table.rows:for cell in row.cells:content.append(cell.text)for rel in doc.part.rels.values():if "textBox" in rel.target_ref:text_box = rel.target_partfor element in text_box.element.body:if element.tag.endswith('p'):content.append(element.text)content = '\n'.join(content)content = clean_text(content)qa_pairs = extract_qa_pairs_from_content(content)return qa_pairsdef相关文章:
羲和数据集收集器1.3
为了实现所要求的功能,我们需要进一步完善代码,使其能够处理多种格式的输入文件,并生成符合要求的 JSON 格式的输出文件。具体来说,我们完善了以下内容: 增强 extract_qa_pairs_from_content 函数:使其能够识别和处理不同格式的 QA 对。 确保输出文件的格式正确:每个 Q…...
UE--IOS打包失败 AutomationTool exiting with ExitCode=9 (9)
[Remote] Executing build UATHelper: 打包 (IOS): Setting up bundled DotNet SDK UATHelper: 打包 (IOS): /Users/zyh/UE5/Builds/DESKTOP-FKKSVFQ/Y/UE/UE_5.2/Engine/Build/BatchFiles/Mac/../../../Binaries/ThirdParty/DotNet/6.0.302/mac-x64 UATHelper: 打包 (IOS)…...
第8章利用CSS制作导航菜单
8.1 水平顶部导航栏 水平菜单导航栏是应用范围最广的网站导航设计,一般位于页面顶部。它适用性强,几乎适用于所有类型的网站,且设计难度低。若导航过于普通,无法承载复杂信息结构,在内容模块较多时,则需结…...
UNIX网络编程-TCP套接字编程
概述 TCP客户端/服务器程序示例是执行如下步骤的一个回射服务器: 客户端从标准输入读入一行文本,并写给服务器。服务器从网络输入读入这行文本,并回射给客户端。客户端从网络输入读入这行回射文本,并显示在标准输出上。 TCP服务器…...
美团代付微信小程序 read.php 任意文件读取漏洞复现
0x01 产品描述: 美团代付微信小程序是美团点评旗下的一款基于微信小程序技术开发的应用程序功能,它允许用户方便快捷地请求他人为自己支付订单费用。通过微信小程序,用户可以轻松实现代付操作,无需跳转到其他应用或网页…...
centos7 node升级到node18
使用jenkins发布vue3项目提示node18安装失败 错误日志: /var/lib/jenkins/tools/jenkins.plugins.nodejs.tools.NodeJSInstallation/Node18/bin/node: /lib64/libm.so.6: version GLIBC_2.27 not found (required by /var/lib/jenkins/tools/jenkins.plugins.node…...
使用Matlab建立随机森林
综述 除了神经网络模型以外,树模型及基于树的集成学习模型是较为常用的效果较好的预测模型。我们以下构建一个随机森林模型。 随机森林是一种集成学习方法,通过构建多个决策树并结合其预测结果来提高模型的准确性和稳定性。在MATLAB中,可以…...
【江苏-无锡】《无锡市市级政务信息化建设及运行维护项目支出预算标准(试行)》 -省市费用标准解读系列10
2023年3月28日,无锡市政府投资评审中心出台《无锡市市级政务信息化建设及运行维护项目支出预算标准(试行)》,此标准是为进一步提高财政评审效率,规范评审行为,保证评审质量,节约政府投资&#x…...
2024-11-12 问AI: [AI面试题] 您将如何设计一个人工智能系统来预测电信公司的客户流失?
文心一言 设计一个人工智能系统来预测电信公司的客户流失,是一个复杂但至关重要的任务,它涉及到多个步骤和关键要素。以下是一个详细的设计方案: 一、明确需求和目标 在设计智能系统之前,需要明确系统的需求和目标,…...
【数字静态时序分析】复杂时钟树的时序约束SDC写法
以上图为例,SoC芯片上往往存在几种不同的时钟源,有pll时钟、环振时钟、外部的晶振时钟,在SoC不同的模块或者不同的运行阶段使用的时钟也往往不同,所以在使用的时候,相同的模块会出现选择不同的时钟源的情况。上图的情形…...
springboot苍穹外卖实战:五、公共字段自动填充(aop切面实现)+新增菜品功能+oss
公共字段自动填充 不足 比起瑞吉外卖中的用自定义元数据类型mybatisplus的实现,这里使用的是aop切面实现,会麻烦许多,建议升级为mp。 定义好数据库操作类型 sky-common中已经定义好,OperationType。 自定义注解 AutoFill co…...
Go 语言中,golang结合 PostgreSQL 、MySQL驱动 开启数据库事务
Go 语言中,golang结合 PostgreSQL 、MySQL驱动 开启数据库事务 PostgreSQL代码说明: MySQL代码说明: PostgreSQL 在 Go 语言中,使用 database/sql 包结合 PostgreSQL 驱动(如 github.com/lib/pq)可以方便地…...
Git核心概念
目录 版本控制 什么是版本控制 为什么要版本控制 本地版本控制系统 集中化的版本控制系统 分布式版本控制系统 认识Git Git简史 Git与其他版本管理系统的主要区别 Git的三种状态 Git使用快速入门 获取Git仓库 记录每次更新到仓库 一个好的 Git 提交消息如下&#…...
网络安全技术在能源领域的应用
摘要 随着信息技术的飞速发展,能源领域逐渐实现了数字化、网络化和智能化。然而,这也使得能源系统面临着前所未有的网络安全威胁。本文从技术的角度出发,探讨了网络安全技术在能源领域的应用,分析了能源现状面临的网络安全威胁&a…...
这些场景不适合用Selenium自动化!看看你踩过哪些坑?
Selenium是自动化测试中的一大主力工具,其强大的网页UI自动化能力,让测试人员可以轻松模拟用户操作并验证系统行为。然而,Selenium并非万能,尤其是在某些特定场景下,可能并不适合用来自动化测试。本文将介绍Selenium不…...
PHP反序列化靶场(php-SER-libs-main 第一部分)
此次靶场为utools-php-unserialize-main。适合有一定基础的师傅,内容是比较全面的,含有我们的大部分ctf中PHP反序列化的题型。 level1: <?php highlight_file(__FILE__); class a{var $act;function action(){eval($this->act);} } …...
基于大数据爬虫+Python+SpringBoot+Hive的网络电视剧收视率分析与可视化平台系统(源码+论文+PPT+部署文档教程等)
博主介绍:CSDN毕设辅导第一人、全网粉丝50W,csdn特邀作者、博客专家、腾讯云社区合作讲师、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌ 技术范围…...
DHCP与FTP
DHCP dhcp:动态主机配置的协议,应用在大型的局域网环境中 服务端和客户端 服务端:提供IP地址,某种特定功能的提供者 客户端:请求IP地址,请求对应的功能的使用者 服务端的端口号:67 客户端的端…...
云渲染与云电脑,应用场景与技术特点全对比
很多朋友问,你们家一会宣传云渲染,一会宣传云电脑的,我到底用哪个?今天,渲染101云渲染和川翔云电脑就来对比下两者的区别! 渲染101&川翔云电脑,都是我们的产品,邀请码6666 一、…...
RockPI 4A单板Linux 4.4内核下的RK3399 GPIO功能解析
RockPI 4A单板Linux 4.4内核下的RK3399 GPIO功能解析 摘要:本文将基于RockPI 4A单板,介绍Linux 4.4内核下RK3399 GPIO(通用输入输出)功能的使用方法。通过详细的代码解析和示例,帮助读者理解如何在Linux内核中使用GPI…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
