deeponet(nature原文部分重点提取)
论文链接:Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators | Nature Machine Intelligence
原文部分重点提取
DeepONets 会产生小的泛化误差
隐式类型算子还可以描述我们对其形式没有任何数学知识的系统
DeepONets 中的训练数据集大小是输入函数 u 的数量和 G(u) 的评估位置 y 的数量的乘积。
在使用结构化数据从偏微分方程学习算子时,一些工作将输入和输出函数视为图像,然后使用卷积神经网络(CNN)来学习图像到图像的映射 G(参考文献 1)。),但这种方法只能应用于特定类型的问题,其中
选择了 16 个测试用例来研究对空间 V 进行采样的重要问题。这些示例包括积分、勒让德变换、分数阶导数、非线性 ODE 和 PDE,以及随机 ODE 和 PDE。

G : u ↦ G(u) 它需要两个输入 [u(x), u(x), …, u(x)] 和 y
令 G 为采用输入函数 u 的运算符,G(u) 为相应的输出函数。对于 G(u) 域中的任意点 y,输出 G(u)(y) 是实数。因此,网络的输入由两部分组成:u 和 y,输出为 G(u)(y)

一般来说,输入没有任何特定的结构,因此我们使用 FNN 和 ResNet 作为基线模型(branch分支中)。为了将 DeepONets 与其他模型进行比较,我们还考虑将 CNN 或 RNN 作为特定问题和数据集的一些示例中的基线。
在本研究中,我们所有的训练数据集都是从数值求解器获得的;

函数 g 和 f 可以选择为不同类别的神经网络,满足函数的经典万能逼近定理,例如(堆叠/非堆叠)全连接神经网络FNN、残差神经网络resnet和卷积神经网络CNN。
我们主要考虑以下函数空间:高斯随机场(GRF)、谱表示并将输入函数表示为图像。我们注意到,一个数据点是一个三元组 (u, y, G(u)(y)),因此特定输入 u 可能出现在具有不同 y 值的多个数据点中。例如,大小为 10,000 的数据集只能从 100 个u 轨迹生成,并且每个轨迹在 100 个不同的 y 位置评估 G(u)(y)。此外,对于不同的u,y的数量和位置可能不同。在我们的数据集中,对于每个 u,我们在 G(u) 域中随机选择 P 个不同的 y 点,因此数据点的总数等于 P ×u。
案例2d:

这个案例可以发现是将定义域从一维映射到二维
初始条件或边界条件的值为零
"Zero initial/boundary conditions"
数学和物理学中常用的术语,尤其是在涉及微分方程、偏微分方程、流体动力学、电磁学等领域时。指的是在求解某些方程时,所施加的初始条件或边界条件的值为零。
1. Zero Initial Conditions(零初始条件)
- 定义:初始条件指定了在时间 ( t = 0 ) 时,系统或方程的状态。在零初始条件下,系统的初始状态被设定为零。
- 举例:假设你在求解一个振动系统(例如弹簧振子),零初始条件意味着在 ( t = 0 ) 时,位移和速度都为零,即 ( x(0) = 0 ) 和 ( v(0) = 0 )。
2. Zero Boundary Conditions(零边界条件)
- 定义:边界条件用于描述在空间某些特定位置(通常是系统的边界)上的解的行为。零边界条件指的是在边界上的解值为零。
- 举例:假设你在求解热传导问题,零边界条件意味着在边界的温度为零,类似于在求解一个固体物体的热分布时,边界上的温度为零,即 ( T(x = 0) = 0 ) 或 ( T(x = L) = 0 ),其中 ( L ) 是物体的长度。
总结:
- 零初始条件:意味着在时间 ( t = 0 ) 时,系统的状态(例如位移、速度、温度等)为零。
- 零边界条件:意味着在空间边界上的值为零,常用于描述某些物理量在边界处的行为。
这些条件在物理学、工程学和其他应用科学中通常用于简化问题,帮助数学模型更容易求解。
总结中提到deeponet-fno代码中电对流案例
更广泛地说,DeepONet 可以代表一个多尺度算子,该算子使用时空尺度上多个数量级的数据进行训练,例如,使用流体力学或其他多尺度问题中的分子、介观和连续介质体系的数据进行训练。我们还可以设想其他类型的复合 DNN,用于开发多物理场算子,例如,在电对流中,由于外加电势的连续变化,涉及阴离子和阳离子的流场和浓度场的演变。事实上,在正在进行的工作中,我们开发了 DeepONet 的扩展来模拟这种电对流多物理场问题,我们表明 DeepONet 比谱元求解器快得多。我们在高超音速方面获得了类似的加速和高精度,用于学习空气动力学以及多个物种的有限速率化学。如果泛化误差是有界的,学习这种多尺度和多物理场非线性算子将简化计算建模,并且有助于以良好的精度快速预测未见过的新参数值和新输入函数(边界/初始条件/激励)的复杂动力学。
后续:找了一下代码看还没有开发,issue中也没有提到截至目前
issue中提到可以用带有时间的2D或者3d数据,作者提到deeponet输入和输出有不同的可能方式。
url:Handling 3D data like time evolution of 2D fluid flow. · Issue #2 · lu-group/deeponet-fno · GitHub
问题:
现在,我想使用 DeepONet 解决流动问题。我的输入是维度(样本、高度、宽度、时间)或对应于不同时间步骤的图像,这些图像描述了流动的演变。具体来说,我的输入是从 t = 1 到 m 个时间步骤的速度,我想预测接下来的 n 个时间步骤的速度 [batch, :,:,:m] -> [batch,:,:, m: m+n]。
我应该如何预处理此类问题的数据?是否有使用 deepOnet 的此类流问题的代码实现?
另外,我们可以使用类似 FNO-2D-time 的 DeepOnet(更多是 RNN 类型结构)吗?
自己案例可以考虑用deeponet的情况
预测所有时间上的位移
可以考虑每个点的位移共3159个
input_branch(500,3159,3) input_trunk:time(500)
output:(500,3159,3)
上个时间预测下个时间上的
input_branch(500,3159,3) input_trunk:数字range(3159,3)
output:(500,3159,3)
其他待实现想法
上个时间到下个时间位移的映射,也就是位移量的算子(能不能用流体固体合在一起?或者用两个deeponet让下一个时间的流固体位移总损失最小做为损失函数?也可以考虑流体到固体坐标(耦合算子)的映射行不行?)
相关文章:
deeponet(nature原文部分重点提取)
论文链接:Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators | Nature Machine Intelligence 原文部分重点提取 DeepONets 会产生小的泛化误差 隐式类型算子还可以描述我们对其形式没有任何数学知识的系统 De…...
LeetCode【0036】有效的数独
本文目录 1 中文题目2 求解方法:python内置函数set2.1 方法思路2.2 Python代码2.3 复杂度分析 3 题目总结 1 中文题目 请根据以下规则判断一个 9 x 9 的数独是否有效。 数字 1-9 在每一行只能出现一次。数字 1-9 在每一列只能出现一次。数字 1-9 在每一个以粗实线…...
Typecho登陆与评论添加Geetest极验证,支持PJAX主题(如Handsome)
Typecho登陆与评论添加Geetest极验证,支持PJAX主题(如Handsome) 起因 最近垃圾评论比较多,为了防止一些机器人,我给博客添加了一些评论过滤机制,并为评论添加了验证码。 原本使用的插件是noisky/typecho…...
前端入门一之ES6--面向对象、够着函数和原型、继承、ES5新增方法、函数进阶、严格模式、高阶函数、闭包
前言 JS是前端三件套之一,也是核心,本人将会更新JS基础、JS对象、DOM、BOM、ES6等知识点,这篇是ES6;这篇文章是本人大一学习前端的笔记;欢迎点赞 收藏 关注,本人将会持续更新。 文章目录 JS高级 ES61、面向对象1.1…...
脑机接口、嵌入式 AI 、工业级 MR、空间视频和下一代 XR 浏览器丨RTE2024 空间计算和新硬件专场回顾
这一轮硬件创新由 AI 引爆,或许最大受益者仍是 AI,因为只有硬件才能为 AI 直接获取最真实世界的数据。 在人工智能与硬件融合的新时代,实时互动技术正迎来前所未有的创新浪潮。从嵌入式系统到混合现实,从空间视频到脑机接口&…...
RoseTTAFold MSA_emb类解读
MSA_emb 类的作用是对多序列对齐(MSA)数据进行嵌入编码,同时添加位置编码和查询编码(调用PositionalEncoding 和 QueryEncoding)以便为序列特征建模类。 源代码: class MSA_emb(nn.Module):def __init__(self, d_model=64, d_msa=21, p_drop=0.1, max_len=5000):super(…...
2411C++,C++26反射示例
参考 namespace __impl {template<auto... vals>struct replicator_type {template<typename F>constexpr void operator>>(F body) const {(body.template operator()<vals>(), ...);}};template<auto... vals>replicator_type<vals...>…...
Ubuntu上搭建Flink Standalone集群
Ubuntu上搭建Flink Standalone集群 本文部分内容转自如下链接。 环境说明 ubuntu 22.06 先执行apt-get update更新环境 第1步 安装JDK 通过apt自动拉取 openjdk8 apt-get install openjdk-8-jdk执行java -version,如果能显示Java版本号,表示安装并…...
C语言 精选真题2
题目要求:将形参s所指向的字符串转换为整数并且返回 知识点: 将字符1转化为整数1 int fun(char *s) {int flag1,n0; if(*s-) //先根据第一个符号来判断是正负;然后读取第二位{flag-1;s; }else if(*s){s;}while(*s>0&&…...
Netty篇(WebSocket)
目录 一、简介 二、特点 三、websock应用场景 四、websocket案例 1. 服务端 2. 处理器 3. 页面端处理 五、参考文献 一、简介 没有其他技术能够像WebSocket一样提供真正的双向通信,许多web开发者仍然是依赖于ajax的长轮询来 实现。(注ÿ…...
云原生-docker安装与基础操作
一、云原生 Docker 介绍 Docker 在云原生中的优势 二、docker的安装 三、docker的基础命令 1. docker pull(拉取镜像) 2. docker images(查看本地镜像) 3. docker run(创建并启动容器) 4. docker ps…...
MySQL数据库:SQL语言入门 【上】(学习笔记)
SQL(Structured Query Language)是结构化查询语言的简称,它是一种数据库查询和程序设计语言,同时也是目前使用最广泛的关系型数据库操作语言。(95%适用于所有关系型数据库) 【 SQL是关系型数据库通用的操作…...
重学 Android 自定义 View 系列(六):环形进度条
目标 自定义一个环形进度条,可以自定义其最大值、当前进度、背景色、进度色,宽度等信息。 最终效果如下(GIF展示纯色有点问题): 1. 结构分析 背景圆环:表示进度条的背景。进度圆环:表示当前…...
nodejs 020: React语法规则 props和state
props和state 在 React 中,props 和 state 是管理数据流的两种核心机制。理解它们之间的区别和用途是构建 React 应用程序的基础。 一、props 和 state的区别 特性propsstate定义方式由父组件传递给子组件的数据组件内部管理的本地数据是否可修改不可变ÿ…...
STM32问题集
这里写目录标题 一、烧录1、 Can not connect to target!【ST-LINK烧录】 一、烧录 1、 Can not connect to target!【ST-LINK烧录】 烧录突然 If the target is in low power mode, please enable “Debug in Low Power mode” option from Target->settings menu 然后就&…...
SwiftUI(十二)- 容器组件 布局与结构的基石
引言 在用户界面开发中,布局是设计一个应用程序的视觉层次和交互体验的核心之一。无论是设计简单的按钮排布,还是复杂的多层次页面,合理的布局和结构可以极大地提升用户体验。而容器组件,作为将多个视图整合、组织、排列的工具&a…...
想租用显卡训练自己的网络?AutoDL保姆级使用教程(PyCharm版)
各位小伙伴们大家好~ 不知道各位同学在科研过程中是否有这样的苦恼 电脑无显卡。难不成我要用CPU跑实验吗?救救我吧电脑显卡算力太低。训练过程慢慢慢慢慢,等半天都出不来结果电脑显卡显存不够,batchsize稍微高一点点,就要爆显存…...
LeetCode【0039】组合总和
本文目录 1 中文题目2 求解方法:回溯法2.1 方法思路2.2 Python代码2.3 复杂度分析 3 题目总结 1 中文题目 给定一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 &#…...
AscendC从入门到精通系列(一)初步感知AscendC
1 什么是AscendC Ascend C是CANN针对算子开发场景推出的编程语言,原生支持C和C标准规范,兼具开发效率和运行性能。基于Ascend C编写的算子程序,通过编译器编译和运行时调度,运行在昇腾AI处理器上。使用Ascend C,开发者…...
PostgreSQL中的COPY命令:高效数据导入与导出
在PostgreSQL数据库中,数据导入和导出是日常工作中常见的操作。传统的插入(INSERT)方法虽然可以实现数据的导入,但在处理大量数据时效率较低。而COPY命令则提供了一个快速、高效的方式来完成这一任务。COPY命令不仅可以用于将数据…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...
基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...
软件工程 期末复习
瀑布模型:计划 螺旋模型:风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合:模块内部功能紧密 模块之间依赖程度小 高内聚:指的是一个模块内部的功能应该紧密相关。换句话说,一个模块应当只实现单一的功能…...
[特殊字符] 手撸 Redis 互斥锁那些坑
📖 手撸 Redis 互斥锁那些坑 最近搞业务遇到高并发下同一个 key 的互斥操作,想实现分布式环境下的互斥锁。于是私下顺手手撸了个基于 Redis 的简单互斥锁,也顺便跟 Redisson 的 RLock 机制对比了下,记录一波,别踩我踩过…...
