当前位置: 首页 > news >正文

基于Python 和 pyecharts 制作招聘数据可视化分析大屏

在本教程中,我们将展示如何使用 Python 和 pyecharts 库,通过对招聘数据的分析,制作一个交互式的招聘数据分析大屏。此大屏将通过不同类型的图表(如柱状图、饼图、词云图等)展示招聘行业、职位要求、薪资分布等信息。
在这里插入图片描述

1. 准备工作

1.1 安装必要的 Python 库

在开始之前,确保你已经安装了以下 Python 库:

pip install pandas pyecharts jieba openpyxl
  • pandas:用于数据处理。
  • pyecharts:用于生成可交互的图表。
  • jieba:用于中文分词。
  • openpyxl:用于读取 Excel 文件。

1.2 数据集准备

假设我们已经有一个招聘数据集 tmp.xlsx,它包含以下字段:

  • Industry:行业
  • Job Experience:工作经验要求
  • Job Education:学历要求
  • Staff Size:公司规模
  • Job Location:工作地点
  • key_word_list:关键词列表
  • Job Intro:职位介绍
  • lowest_salary:最低薪资
  • highest_salary:最高薪资

数据集的每一行代表一个招聘职位信息。

2. 数据加载与处理

2.1 读取数据

我们使用 pandas 读取 Excel 文件,并进行一些初步的数据清理。

import pandas as pd# 读取 Excel 数据
df_reset = pd.read_excel('./tmp.xlsx')# 查看数据基本信息
print(df_reset.head())

2.2 统计行业数量

我们通过 Counter 来统计招聘数据中不同行业的数量,跳过 “None” 值。

from collections import Counter# 统计行业数量,跳过 "None" 值
industry_count = Counter(industry for industry in df_reset['Industry'] if industry != 'None')# 获取前 10 个最常见的行业
industry_count_top10 = dict(industry_count.most_common(10))

2.3 统计工作经验和学历要求

我们同样可以对工作经验和学历要求进行统计,并获取前 10 个最常见的要求。

# 统计工作经验要求
education_counts = pd.Series(df_reset['Job Experience']).value_counts()
top10_education_counts = education_counts.head(10)# 统计学历要求
education_counts = pd.Series(df_reset['Job Education']).value_counts()
top10_education_counts = education_counts.head(10)

2.4 处理员工规模

对于员工规模字段,我们需要将包含字符串 “None” 的值替换为 NaN,然后进行统计。

# 替换 "None" 为 NaN
df_reset['Staff Size'] = df_reset['Staff Size'].replace('None', pd.NA)
size_counts = df_reset['Staff Size'].value_counts().dropna()

2.5 处理职位地点

为了分析职位的地理分布,我们将城市名称处理为带有“市”字的格式,并统计不同城市的数量。

# 定义函数,在每个有效字符串值后面添加"市"
def add_city(value):if isinstance(value, str):return value + "市"return value# 应用函数到 Job Location 列
df_reset["Job Location"] = df_reset["Job Location"].apply(add_city)# 去除空值行
df_reset1 = df_reset.dropna(subset=["Job Location"])# 统计职位地点
location_counts = df_reset1['Job Location'].value_counts().reset_index()

2.6 关键词提取和频率统计

我们从职位介绍中提取关键词,并统计它们的出现频率。使用 jieba 库进行中文分词,并过滤停用词。

import jieba
from collections import Counter# 提取所有关键词
all_keywords = []
for keywords in df_reset1["key_word_list"].dropna():all_keywords.extend(keywords.split(','))# 统计关键词出现频率
keyword_counts = Counter(all_keywords)# 获取前 10 个关键词
top_ten_keywords = keyword_counts.most_common(10)
keywords, counts = zip(*top_ten_keywords)

3. 数据可视化

我们将使用 pyecharts 库来生成各种类型的图表,展示数据的不同方面。

3.1 设置主题与表格

首先,设置一些基础配置,比如页面主题和表格颜色。

from pyecharts import options as opts
from pyecharts.components import Table
from pyecharts.globals import ThemeType
from pyecharts.charts import Pagetheme_config = ThemeType.PURPLE_PASSION  # 更改为您需要的主题类型# 设置表格颜色
table_color = '#5B5C6E'  # 紫色主题的颜色

3.2 创建柱状图:行业数量

我们将创建一个柱状图,展示前 10 个行业的招聘数量。

from pyecharts.charts import Barbar_chart = Bar(init_opts=opts.InitOpts(theme=theme_config, width="450px", height="350px"))
bar_chart.add_xaxis(list(industry_count_top10.keys()))
bar_chart.add_yaxis("行业数量", list(industry_count_top10.values()))
bar_chart.set_global_opts(title_opts=opts.TitleOpts(title="前十大行业数量"))

在这里插入图片描述

3.3 创建饼图:学历要求分布

使用 Pie 图来展示工作经验和学历要求的分布。

from pyecharts.charts import Piepie_chart_education = Pie(init_opts=opts.InitOpts(theme=theme_config, width="450px", height="350px"))
sizes = [int(count) for count in top10_education_counts]
pie_chart_education.add("", [list(z) for z in zip(top10_education_counts.index, sizes)], radius=["30%", "75%"], rosetype="radius")
pie_chart_education.set_global_opts(title_opts=opts.TitleOpts(title="学历要求分布"))

在这里插入图片描述

3.4 创建雷达图:职位地点

为了展示职位地点的分布,我们使用 Radar 图。

from pyecharts.charts import Radarradar = Radar(init_opts=opts.InitOpts(theme=theme_config, width="450px", height="350px"))
radar.add_schema(schema=[opts.RadarIndicatorItem(name=city, max_=1000) for city in location_counts['Job Location']]
)
radar.add("职位地点", [location_counts['Job Location'].tolist()], areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
radar.set_global_opts(title_opts=opts.TitleOpts(title="职位地点雷达图"))

在这里插入图片描述

3.5 创建词云图:职位介绍

使用 WordCloud 图展示职位介绍中的高频词。

from pyecharts.charts import WordCloudwordcloud = WordCloud(init_opts=opts.InitOpts(theme=theme_config, width="450px", height="350px"))
wordcloud.add("", top_words, word_size_range=[20, 100])
wordcloud.set_global_opts(title_opts=opts.TitleOpts(title="职位介绍词云图"))

在这里插入图片描述

3.6 创建薪资分布直方图

计算每个职位的平均薪资,并绘制薪资分布的直方图。

df_reset['average_salary'] = (df_reset['lowest_salary'] + df_reset['highest_salary']) / 2
salary_distribution = df_reset['average_salary'].value_counts().sort_index().reset_index()salary_histogram = Bar(init_opts=opts.InitOpts(theme=theme_config, width="450px", height="350px"))
salary_histogram.add_xaxis(salary_distribution['index'].astype(str).tolist())
salary_histogram.add_yaxis("Frequency", salary_distribution['average_salary'].tolist())
salary_histogram.set_global_opts(title_opts=opts.TitleOpts(title="薪资分布"))

在这里插入图片描述

3.7 将所有图表组合成页面

最后,我们将所有生成的图表组合成一个页面,并渲染为 HTML 文件。

page = Page(page_title="基于Python分析大屏")
page.add(bar_chart,pie_chart_education,radar,wordcloud,salary_histogram
)page.render('招聘分析大屏.html')

4. 结果展示

运行完上述代码后,你将得到一个名为 招聘分析大屏.html 的文件。打开这个 HTML 文件,你将看到一个交互式的招聘数据分析大屏,展示了不同的图表和统计结果,包括行业分布、学历要求、职位地点等信息。
在这里插入图片描述

总结

本教程展示了如何利用 Python 和 pyecharts 库,从招聘数据中提取关键信息,并通过多种可视化图表呈现分析结果。你可以根据自己的需求调整数据来源和图表类型,进一步扩展和优化你的数据分析大屏。
在这里插入图片描述

数据集和代码可添加

相关文章:

基于Python 和 pyecharts 制作招聘数据可视化分析大屏

在本教程中,我们将展示如何使用 Python 和 pyecharts 库,通过对招聘数据的分析,制作一个交互式的招聘数据分析大屏。此大屏将通过不同类型的图表(如柱状图、饼图、词云图等)展示招聘行业、职位要求、薪资分布等信息。 …...

探索光耦:晶体管光耦——智能家居的隐形桥梁,让未来生活更智能

在这个日新月异的科技时代,智能家居正以前所未有的速度融入我们的日常生活,从智能灯光到温控系统,从安防监控到语音助手,每一处细节都透露着科技的温度与智慧。而在这场智能化浪潮中,一个看似不起眼却至关重要的组件—…...

三、模板与配置(上)

三、模板与配置 1、WXML模板语法-数据、属性绑定 讲解: 1-1、数据绑定的基本原则 在data中定义数据 Page({data: {//这里是你需要定义的数据} })在WXML中使用数据 {{ 你定义的数据 }}1-2、在data中定义页面的数据 在页面对应的.js文件中,把数据定…...

基于SpringBoot和Vue的公司文档管理系统设计与开发(源码+定制+开发)

博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…...

Java21 Switch最全使用说明

Java21 Switch最全使用说明 Java 21 对 switch 语句进行了重大的改进和增强,使其变得更加灵活和强大。本文将详细介绍 Java 21 中 switch 语句的各种用法,包括基本语法、新特性、高级用法和最佳实践。 1. 基本语法 1.1 传统的 switch 语句 传统的 sw…...

普通电脑上安装属于自己的Llama 3 大模型和对话客户端

#大模型下载地址:# Llama3 因为Hugging Face官网正常无法访问,因此推荐国内镜像进行下载: 官网地址:https://huggingface.co 国内镜像:https://hf-mirror.com GGUF 模型文件名称接受,如上述列表中&…...

微信小程序原生 canvas画布截取视频帧保存为图片并进行裁剪

html页面&#xff1a; 视频尺寸过大会画布会撑开屏幕&#xff0c;要下滑 尺寸和视频链接是从上个页面点击传过来的&#xff0c;可自行定义 <canvas id"cvs1" type"2d" style"width: {{videoWidth}}px;height: {{videoHeight}}px;"><…...

社交网络图中结点的“重要性”计算

题目描述 输入 输出 输入样例1 9 14 1 2 1 3 1 4 2 3 3 4 4 5 4 6 5 6 5 7 5 8 6 7 6 8 7 8 7 9 3 3 4 9 输出样例1 Cc(3)0.47 Cc(4)0.62 Cc(9)0.35 AC代码 #include <iostream> #include <vector> #include <queue> #include <iomanip>using na…...

前端(1)——快速入门HTML

参考&#xff1a; W3school 1. HTML 我使用的是vs code&#xff0c;在使用之前&#xff0c;先安装以下几个插件&#xff1a; Auto Rename TageHTML CSS SupportLive Server 1.1 HTML标签 HTML全称是 Hypertext Markup Language(超文本标记语言) HTML通过一系列的标签(也称为…...

gitlab角色、权限

GitLab是一个基于Web的Git仓库管理工具&#xff0c;它提供了一套完整的角色和权限管理机制&#xff0c;以控制用户对项目和仓库的访问和操作权限。以下是GitLab中不同角色的基本权限概述&#xff1a; 访客&#xff08;Guest&#xff09;&#xff1a; 可以查看项目中的公开信息。…...

Python办公——批量eml文件提取附件

目录 专栏导读背景1、库的介绍2、库的安装3、核心代码4、完整代码总结专栏导读 🌸 欢迎来到Python办公自动化专栏—Python处理办公问题,解放您的双手 🏳️‍🌈 博客主页:请点击——> 一晌小贪欢的博客主页求关注 👍 该系列文章专栏:请点击——>Python办公自动…...

Spring Boot 中 Druid 连接池与多数据源切换的方法

Spring Boot 中 Druid 连接池与多数据源切换的方法 在Spring Boot项目中&#xff0c;使用Druid连接池和进行多数据源切换是常见的需求&#xff0c;尤其是在需要读写分离、数据库分片等复杂场景下。本文将详细介绍如何在Spring Boot中配置Druid连接池并实现多数据源切换。 一、…...

JavaScrip中私有方法的创建

在 JavaScript 中&#xff0c;私有方法是指只能在类的内部使用&#xff0c;外部无法访问的函数。为了实现这一点&#xff0c;JavaScript 提供了几种方法&#xff0c;主要通过以下几种方式来创建私有方法&#xff1a; 1. 使用 #&#xff08;私有字段和方法&#xff09; 从 ECM…...

.Net Core根据文件名称自动注入服务

.Net Core根据文件名称自动注入服务 说明分析逻辑所有代码一键注入 说明 这个适用于.Net Core 的Web项目,且需要在服务中注入接口的需求.因为之前些Java Web习惯了,所以会有Dao层,Serivce层和Controller层.但是如果一个项目里面对于不同的数据库会有多个Dao,如果一个一个引入会…...

APT 参与者将恶意软件嵌入 macOS Flutter 应用程序中

发现了一些恶意软件样本&#xff0c;这些样本据信与朝鲜民主主义人民共和国 (DPRK)&#xff08;又称北朝鲜&#xff09;有关&#xff0c;这些样本使用 Flutter 构建&#xff0c;Flutter 的设计可以对恶意代码进行混淆。JTL 深入研究了恶意代码的工作原理&#xff0c;以帮助保护…...

第 3 章 -GO语言 基本语法

1. 注释 在编程中&#xff0c;注释是帮助理解代码的重要工具。Go语言支持两种类型的注释&#xff1a; 单行注释&#xff1a;以 // 开头&#xff0c;直到行尾都是注释。多行注释&#xff1a;以 /* 开始&#xff0c;以 */ 结束&#xff0c;可以跨越多行。 示例 package maini…...

【qt】控件

1.frameGeometry和Geometry区别 frameGeometry是开始从红圈开始算&#xff0c;Geometry从黑圈算 程序证明&#xff1a;使用一个按键&#xff0c;当按键按下,qdebug打印各自左上角的坐标&#xff08;相当于屏幕左上角&#xff09;&#xff0c;以及窗口大小 Widget::Widget(QWid…...

入侵检测算法平台部署LiteAIServer视频智能分析平台行人入侵检测算法:科技守护安全的新篇章

在现代化城市快速发展的背景下&#xff0c;安全防范已成为城市管理与社会生活中不可或缺的一环。随着人工智能、大数据、物联网等技术的飞速发展&#xff0c;智能化安防系统正逐步改变着传统的安全防护模式&#xff0c;特别是在行人入侵检测领域&#xff0c;视频智能分析平台Li…...

【AiPPT-注册/登录安全分析报告-无验证方式导致安全隐患】

前言 由于网站注册入口容易被机器执行自动化程序攻击&#xff0c;存在如下风险&#xff1a; 暴力破解密码&#xff0c;造成用户信息泄露&#xff0c;不符合国家等级保护的要求。短信盗刷带来的拒绝服务风险 &#xff0c;造成用户无法登陆、注册&#xff0c;大量收到垃圾短信的…...

【设计模式】行为型模式(二):策略模式、命令模式

行为型模式&#xff08;二&#xff09;&#xff1a;策略模式、命令模式 3.策略模式&#xff08;Strategy&#xff09;3.1 示例3.1.1 定义策略接口3.1.2 实现具体策略3.1.3 定义上下文类3.1.4 客户端代码3.1.5 输出结果 3.2 总结3.2.1 优点3.2.2 缺点 4.命令模式&#xff08;Com…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

【SpringBoot自动化部署】

SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一&#xff0c;能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时&#xff0c;需要添加Git仓库地址和凭证&#xff0c;设置构建触发器&#xff08;如GitHub…...

【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道

文/法律实务观察组 在债务重组领域&#xff0c;专业机构的核心价值不仅在于减轻债务数字&#xff0c;更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明&#xff0c;合法债务优化需同步实现三重平衡&#xff1a; 法律刚性&#xff08;债…...