当前位置: 首页 > news >正文

卷积、频域乘积和矩阵向量乘积三种形式之间的等价关系与转换

线性移不变系统

线性移不变系统(Linear Time-Invariant System, LTI系统)同时满足线性和时不变性两个条件。

  1. 线性:如果输入信号的加权和通过系统后,输出是这些输入信号单独通过系统后的输出的相同加权和,那么该系统就是线性的。数学上,对于任意输入信号 x 1 ( t ) x_1(t) x1(t) x 2 ( t ) x_2(t) x2(t),以及任意常数 a a a b b b,如果系统满足:
    y ( t ) = a ⋅ h ( x 1 ( t ) ) + b ⋅ h ( x 2 ( t ) ) y(t) = a \cdot h(x_1(t)) + b \cdot h(x_2(t)) y(t)=ah(x1(t))+bh(x2(t))
    其中 h ( ⋅ ) h(\cdot) h()表示系统对输入的响应,则该系统是线性的。

  2. 时不变性:如果一个系统的输入信号延迟一段时间后,其输出仅仅是原输出信号同样延迟的时间,而没有其他变化,那么该系统就是时不变的。即,对于任意输入信号 x ( t ) x(t) x(t)及其延迟版本 x ( t − τ ) x(t - \tau) x(tτ),系统的输出也仅仅是 y ( t ) y(t) y(t)延迟了 τ \tau τ时间单位的版本 y ( t − τ ) y(t - \tau) y(tτ)

LTI系统的一个重要性质是,它们可以通过卷积来描述。具体来说,如果 h ( t ) h(t) h(t)是系统的冲激响应(即当输入为单位脉冲时系统的输出), x ( t ) x(t) x(t)是系统的输入信号,那么系统的输出 y ( t ) y(t) y(t)可以通过输入信号与冲激响应的卷积来计算:
y ( t ) = ( x ∗ h ) ( t ) = ∫ − ∞ ∞ x ( τ ) h ( t − τ ) d τ y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau y(t)=(xh)(t)=x(τ)h(tτ)dτ

这个卷积公式表示,LTI系统的输出是输入信号与系统冲激响应之间的一种加权平均。这一性质使得LTI系统在理论分析和实际应用中都变得极其重要,尤其是在滤波器设计、通信系统、图像处理等领域。通过理解系统的冲激响应,可以预测系统对任何输入信号的响应。

卷积还可以写成频域乘积和矩阵向量乘积两种形式。

在这里插入图片描述

三者之间的等价关系与转换

时域卷积到频域乘积

①→②和②→①根据卷积定理,时域中的卷积对应于频域中的乘积。时域卷积通常用于理论分析,而频域乘积则更常用于实际计算,尤其是当信号长度较长时,通过快速傅里叶变换(FFT)实现的频域乘积可以显著提高计算效率。

  1. 傅里叶变换:首先对输入信号 x ( t ) x(t) x(t)和冲激响应 h ( t ) h(t) h(t)进行傅里叶变换,得到它们的频域表示 X ( f ) X(f) X(f) H ( f ) H(f) H(f)
    X ( f ) = F { x ( t ) } X(f) = \mathcal{F}\{x(t)\} X(f)=F{x(t)}
    H ( f ) = F { h ( t ) } H(f) = \mathcal{F}\{h(t)\} H(f)=F{h(t)}
    这里是psf2otf,解释见这里。
  2. 频域乘积:在频域中,将 X ( f ) X(f) X(f) H ( f ) H(f) H(f)相乘,得到输出信号的频域表示 Y ( f ) Y(f) Y(f)
    Y ( f ) = X ( f ) H ( f ) Y(f) = X(f) H(f) Y(f)=X(f)H(f)
  3. 逆傅里叶变换:对 Y ( f ) Y(f) Y(f)进行逆傅里叶变换,得到输出信号 y ( t ) y(t) y(t)
    y ( t ) = F − 1 { Y ( f ) } y(t) = \mathcal{F}^{-1}\{Y(f)\} y(t)=F1{Y(f)}

在这里插入图片描述
在这里插入图片描述

时域卷积到矩阵向量乘积

①→③对于有限长的离散信号,卷积可以完全等价地用矩阵向量乘积来表示。这种方法在实现离散信号处理算法时非常有用,它可以利用线性代数来进行表示和计算。

  1. 构建卷积矩阵:根据冲激响应 h [ n ] h[n] h[n],构建卷积矩阵 H \mathbf{H} H。假设 x [ n ] x[n] x[n]的长度为 N N N h [ n ] h[n] h[n]的长度为 M M M,则 H \mathbf{H} H是一个 ( N + M − 1 ) × N (N+M-1) \times N (N+M1)×N的矩阵。
    H = [ h [ 0 ] 0 ⋯ 0 h [ 1 ] h [ 0 ] ⋯ 0 ⋮ ⋮ ⋱ ⋮ h [ M − 1 ] h [ M − 2 ] ⋯ h [ 0 ] 0 h [ M − 1 ] ⋯ h [ 1 ] ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ h [ M − 1 ] ] \mathbf{H} = \begin{bmatrix} h[0] & 0 & \cdots & 0 \\ h[1] & h[0] & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ h[M-1] & h[M-2] & \cdots & h[0] \\ 0 & h[M-1] & \cdots & h[1] \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & h[M-1] \end{bmatrix} H= h[0]h[1]h[M1]000h[0]h[M2]h[M1]000h[0]h[1]h[M1]
  2. 矩阵向量乘积:将输入信号 x [ n ] x[n] x[n]表示为列向量 x \mathbf{x} x,计算输出向量 y \mathbf{y} y
    y = H x \mathbf{y} = \mathbf{H} \mathbf{x} y=Hx
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

矩阵向量乘积到时域卷积

③→①对于一个 n × n n \times n n×n的循环矩阵 C C C和一个 n n n维向量 x x x,计算 C x Cx Cx的过程实际上是一个卷积操作。设 c c c C C C的第一列,那么 C x Cx Cx等价于将 c c c x x x进行循环卷积。

  1. 提取冲激响应:从卷积矩阵 H \mathbf{H} H中提取冲激响应 h [ n ] h[n] h[n]。通常, H \mathbf{H} H的第一行或第一列就是 h [ n ] h[n] h[n]
  2. 计算卷积:使用提取的 h [ n ] h[n] h[n]和输入信号 x [ n ] x[n] x[n]计算卷积。
    y [ n ] = ( x ∗ h ) [ n ] = ∑ k = 0 M − 1 x [ n − k ] h [ k ] y[n] = (x * h)[n] = \sum_{k=0}^{M-1} x[n-k] h[k] y[n]=(xh)[n]=k=0M1x[nk]h[k]

矩阵向量乘积到频域乘积

③→②[循环矩阵和BCCB矩阵的对角化,即特征值分解,特征值是傅里叶系数,特征向量是傅里叶变换基。](https://blog.csdn.net/u013600306/article/details/143728757?spm=1001.2014.3001.5501)

总结

  • 时域卷积频域乘积 通过傅里叶变换和逆傅里叶变换相互转换。
  • 时域卷积矩阵向量乘积 通过构建卷积矩阵实现相互转换。
  • 矩阵向量乘积时域卷积 通过提取卷积矩阵中的冲激响应实现。

相关文章:

卷积、频域乘积和矩阵向量乘积三种形式之间的等价关系与转换

线性移不变系统 线性移不变系统(Linear Time-Invariant System, LTI系统)同时满足线性和时不变性两个条件。 线性:如果输入信号的加权和通过系统后,输出是这些输入信号单独通过系统后的输出的相同加权和,那么该系统就…...

【Vue】Vue3.0(二十二) v-model 在原始Dom元素、自定义输入组件中双向绑定的底层实现原理详解

上篇文章 【Vue】Vue3.0(二十一)Vue 3.0中 的$event使用示例 🏡作者主页:点击! 🤖Vue专栏:点击! ⏰️创作时间:2024年11月11日17点30分 文章目录 1. v-model 用于 HTML 标…...

史上最强大的 S3 API?介绍 Prompt API。

迄今为止,对象存储世界已由 PUT 和 GET 的 S3 API 概念定义。然而,我们现在生活的世界需要更多。鉴于 MinIO 的 S3 部署甚至比 Amazon 还多,因此我们不得不提出下一个出色的 S3 API。 这个新 API 就是 Prompt API,它很可能成为有…...

单片机设计智能翻译手势识别系统

目录 前言 一、本设计主要实现哪些很“开门”功能? 二、电路设计原理图 电路图采用Altium Designer进行设计: 三、实物设计图 四、程序源代码设计 五、获取资料内容 前言 在全球化的浪潮下,语言的多样性也为人们的交流带来了不小的挑战…...

「Mac玩转仓颉内测版12」PTA刷题篇3 - L1-003 个位数统计

本篇将继续讲解PTA平台上的题目 L1-003 个位数统计,通过对数字的处理与统计,掌握基础的字符串操作与数组计数功能,进一步提升Cangjie编程语言的实际应用能力。 关键词 PTA刷题数字统计数组操作字符串处理编程技巧 一、L1-003 个位数统计 题…...

飞书文档只读限制复制

飞书文档只读限制复制 场景描述解决方式插件安装测试 场景描述 当使用飞书时,可能会存在无对方文档编辑/管理权限,对方只给自己开放只读权限的时候,此时如果文档较重要,需要本地保存一份,但是又无法复制文档或直接屏蔽…...

【WPF】Prism学习(二)

Prism Commands 1.命令(Commanding) 1.1. ViewModel的作用: ViewModel不仅提供在视图中显示或编辑的数据,还可能定义一个或多个用户可以执行的动作或操作。这些用户可以通过用户界面(UI)执行的动作或操作…...

【鸿蒙开发】第二十一章 Location位置服务

目录 1 简介 1.1 Location Kit简介 1.2 运作机制 1.3 约束与限制 2 位置服务开发 2.1 申请位置权限开发指导 2.1.1 场景概述 2.2 获取设备的位置信息开发指导 2.2.1 场景概述 2.2.2 接口说明 2.2.3 开发步骤 2.3(逆)地理编码转化开发指导 2.…...

《目标检测》R-CNN网络基础(RCNN,Fast-RCNN)

文章目录 1.Overfeat模型2.RCNN网络2.1 算法流程2.1.1 候选区域的生成(了解,已经不再使用了)2.1.2 CNN网络提取特征2.1.3 目标分类(SVM)2.1.4 目标回归(线性回归修正坐标)2.1.5 预测过程 2.2 算…...

iOS中的定位实现(逆地理编码)及Info.plist位置权限详解

引言 在现代移动应用开发中,位置服务已经成为不可或缺的一部分。无论是地图导航、社交分享,还是基于位置的个性化推荐,位置数据都为用户提供了更加丰富和智能的体验。然而,随着用户隐私保护的不断加强,iOS对位置权限的…...

【从零开始的LeetCode-算法】3270. 求出数字答案

给你三个 正 整数 num1 &#xff0c;num2 和 num3 。 数字 num1 &#xff0c;num2 和 num3 的数字答案 key 是一个四位数&#xff0c;定义如下&#xff1a; 一开始&#xff0c;如果有数字 少于 四位数&#xff0c;给它补 前导 0 。答案 key 的第 i 个数位&#xff08;1 < …...

Web认证机制 Cookie、Token、Session、JWT、OAuth2 解析

标题 一、Cookie二、Session三、Token四、JWTSSO&#xff08;单点登录&#xff09; 五、OAuth2如何设计权限系统区别总结 Cookie、Token、Session 和 JWT 都是在 Web 开发中常用的身份验证和授权技术&#xff0c;它们各有优缺点&#xff0c;适用于不同的场景。 Cookie 简单易用…...

Docker 基础命令介绍和常见报错解决

介绍一些 docker 可能用到的基础命令&#xff0c;并解决三个常见报错&#xff1a; 权限被拒绝&#xff08;Permission Denied&#xff09;无法连接到 Docker 仓库&#xff08;Timeout Exceeded&#xff09;磁盘空间不足&#xff08;No Space Left on Device&#xff09; 命令以…...

如何轻松导出所有 WordPress URL 为纯文本格式

作为一名多年的 WordPress 使用者&#xff0c;我深知管理一个网站的复杂性。从迁移网站、设置重定向到整理内容结构&#xff0c;每一步都需要精细处理。而拥有所有 URL 的清单&#xff0c;不仅能让这些工作变得更加简单&#xff0c;还能为后续的管理提供极大的便利。其实&#…...

【进程概念精讲】

Susan,在那命运月台前面&#xff0c;再上车&#xff0c;春天开始落叶.................................................................. 文章目录 前言 一、【认识进程】 1、【进程基本概念引入】 2、【进程的描述与组织——进程控制块&#xff08;PCB&#xff09;与进程…...

帽子矩阵--记录

帽子矩阵 H是一个重要的统计工具&#xff0c;用于评估数据点对模型拟合结果的影响。通过计算帽子矩阵的对角线元素&#xff08;杠杆值&#xff09;&#xff0c;我们可以识别出高杠杆点&#xff0c;这些点对模型的影响较大&#xff0c;可能需要特别关注。...

MySQL深入:B+树的演化、索引和索引结构

提示&#xff1a;内容是读《MySQL技术内幕&#xff1a;InnoDB存储引擎》&#xff0c;笔记摘要 文章目录 二叉查找树平衡二叉树(AVL) B树(BTree)B树(BTree)InnoDB B树索引索引结构&#xff08;InnoDB B树&#xff09;B树存放的数据量 二叉查找树 在二叉查找树中&#xff0c;左子…...

axios 实现 无感刷新方案

实现思路 首次登录前端通过接口获取到两个 token&#xff1b;分别是 accessToken、refreshToken; accessToken&#xff1a;正常请求需要传递的 token &#xff1b;refreshToken&#xff1a;当某个请求 401 &#xff0c;就可以通过 refreshToken 获取到新的 accessToken 特殊场…...

Python 三种方式实现自动化任务

在这篇文章中&#xff0c;我们将介绍一些用Python实现机器人过程自动化的包。机器人流程自动化&#xff08;Robotic process automation&#xff0c;简称RPA&#xff09;是指将鼠标点击和键盘按压自动化的过程&#xff0c;即模拟人类用户的操作。RPA用于各种应用程序&#xff0…...

新型创业模式:退休创业。没有工资,不用投资,有时间就干,不强制做,赚钱按贡献分。

这种“退休创业”的创业模式具有独特的吸引力和灵活性&#xff0c;适合那些已退休但希望继续贡献社会价值、赚取额外收入且无需承担太多责任的群体。以下是一个详细的设计思路&#xff1a; 模式概述 目标人群&#xff1a;退休人员&#xff0c;具有一定技能或经验&#xff0c;但…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址&#xff1a;Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址&#xff08;如 10.244.1.2&#xff09;无特殊名称&#xff1a;在 Kubernetes 中&#xff0c;它通常被称为 “Pod IP” 或 “容器 IP”生命周期&#xff1a;与 Pod …...