DAY64||dijkstra(堆优化版)精讲 ||Bellman_ford 算法精讲
dijkstra(堆优化版)精讲
题目如上题47. 参加科学大会(第六期模拟笔试)
邻接表
本题使用邻接表解决问题。
邻接表的优点:
- 对于稀疏图的存储,只需要存储边,空间利用率高
- 遍历节点链接情况相对容易
缺点:
- 检查任意两个节点间是否存在边,效率相对低,需要 O(V)时间,V表示某节点链接其他节点的数量。
- 实现相对复杂,不易理解

- 节点1 指向 节点3 权值为 1
- 节点1 指向 节点5 权值为 2
- 节点2 指向 节点4 权值为 7
- 节点2 指向 节点3 权值为 6
- 节点2 指向 节点5 权值为 3
- 节点3 指向 节点4 权值为 3
- 节点5 指向 节点1 权值为 10
这样 我们就把图中权值表示出来了。
但是在代码中 使用 pair<int, int> 很容易让我们搞混了,导致代码可读性很差。
那么 可以 定一个类 EDGE来取代 pair<int, int>
堆优化三部曲
1.选源点到哪个节点近且该节点未被访问过,我们需要一个 小顶堆 来帮我们对边的权值排序,每次从小顶堆堆顶 取边就是权值最小的边。
2.该最近节点被标记访问过,和朴素版一样
3.更新非访问节点到源点的距离
和朴素版区别
- 邻接表的表示方式不同
- 使用优先级队列(小顶堆)来对新链接的边排序
代码
堆优化的时间复杂度 只和边的数量有关 和节点数无关,在 优先级队列中 放的也是边。
#include <iostream>
#include <vector>
#include<list>
#include<queue>
#include <climits>
using namespace std;
class mycomparison//小顶堆比较器
{public://重载 () 操作符,比较两个 pair<int, int> 的第二个元素,//返回 lhs.second > rhs.second,使得优先队列按第二个元素从小到大排序。bool operator()(const pair<int,int>&lhs,const pair<int,int>&rhs){return lhs.second>rhs.second;}};
struct Edge
{int to;//邻接顶点int val;//边的权值Edge(int t,int v):to(t),val(v){}//构造函数};int main() {int n,m,p1,p2,val;//公共汽车站数量,公路数量,某站到某站及其所花时间cin>>n>>m;vector<list<Edge>>grid(n+1);//每个元素是一个链表 list<Edge>,用于存储图的邻接表。//读取并填充邻接表for(int i=0;i<m;i++){cin>>p1>>p2>>val;grid[p1].push_back(Edge(p2,val));//将边 p1 到 p2 的信息添加到 grid[p1] 中。}int start=1;int end=n;//初始点和终点vector<int>minDist(n+1,INT_MAX);//存储从起始点到每个节点的最短距离vector<bool>visited(n+1,false);minDist[start]=0;//初始点到自身的距离是0//声明一个优先队列 pq,元素类型为 pair<int, int>,使用 mycomparison 作为比较器,实现小顶堆。priority_queue<pair<int,int>,vector<pair<int,int>>,mycomparison>pg;pg.push(pair<int,int>(start,0));//将起始点及其距离0加入优先队列。//dijkstra算法核心while(!pg.empty()){// <节点, 源点到该节点的距离>// 1、选距离源点最近且未访问过的节点pair<int,int>cur=pg.top();pg.pop();if(visited[cur.first])continue;visited[cur.first]=true;//2.标记该节点已被访问//3.更新非访问节点到源点的距离//遍历当前节点 cur.first 指向的所有邻接节点 edge。for(Edge edge:grid[cur.first]){//如果邻接节点 edge.to 未被访问且通过当前节点 cur.first 到达 edge.to 的距离更短,则更新if(!visited[edge.to]&&minDist[cur.first]+edge.val<minDist[edge.to]){minDist[edge.to]=minDist[cur.first]+edge.val;//将邻接节点 edge.to 及其新的距离加入优先队列。pg.push(pair<int,int>(edge.to,minDist[edge.to]));}}}if(minDist[end]==INT_MAX)cout<<-1<<endl;//无法到达目标elsecout<<minDist[end]<<endl;//到达终点的最短路径}
模拟运行结果
4 4 1 2 1 1 3 4 2 3 1 3 4 1
首先读取
n=4和m=4,初始化邻接表grid。读取边并填充邻接表:
- 边
(1, 2, 1),grid[1].push_back(Edge(2, 1))- 边
(1, 3, 4),grid[1].push_back(Edge(3, 4))- 边
(2, 3, 1),grid[2].push_back(Edge(3, 1))- 边
(3, 4, 1),grid[3].push_back(Edge(4, 1))初始化
minDist和visited。初始化优先队列,将起始点及其距离0加入优先队列。
运行 Dijkstra 算法:
- 第一次迭代:从优先队列中取出节点1,更新
minDist为[0, 1, 4, INT_MAX],并将节点2和3加入优先队列。- 第二次迭代:从优先队列中取出节点2,更新
minDist为[0, 1, 2, INT_MAX],并将节点3加入优先队列。- 第三次迭代:从优先队列中取出节点3,更新
minDist为[0, 1, 2, 3],并将节点4加入优先队列。- 第四次迭代:从优先队列中取出节点4,
minDist保持不变。3
Bellman_ford 算法精讲
94. 城市间货物运输 I
题目描述
某国为促进城市间经济交流,决定对货物运输提供补贴。共有 n 个编号为 1 到 n 的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。
网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本 - 政府补贴。权值为正表示扣除了政府补贴后运输货物仍需支付的费用;权值为负则表示政府的补贴超过了支出的运输成本,实际表现为运输过程中还能赚取一定的收益。
请找出从城市 1 到城市 n 的所有可能路径中,综合政府补贴后的最低运输成本。如果最低运输成本是一个负数,它表示在遵循最优路径的情况下,运输过程中反而能够实现盈利。
城市 1 到城市 n 之间可能会出现没有路径的情况,同时保证道路网络中不存在任何负权回路。
输入描述
第一行包含两个正整数,第一个正整数 n 表示该国一共有 n 个城市,第二个整数 m 表示这些城市中共有 m 条道路。
接下来为 m 行,每行包括三个整数,s、t 和 v,表示 s 号城市运输货物到达 t 号城市,道路权值为 v (单向图)。
输出描述
如果能够从城市 1 到连通到城市 n, 请输出一个整数,表示运输成本。如果该整数是负数,则表示实现了盈利。如果从城市 1 没有路径可达城市 n,请输出 "unconnected"。
输入示例
6 7 5 6 -2 1 2 1 5 3 1 2 5 2 2 4 -3 4 6 4 1 3 5输出示例
1提示信息
示例中最佳路径是从 1 -> 2 -> 5 -> 6,路上的权值分别为 1 2 -2,最终的最低运输成本为 1 + 2 + (-2) = 1。
示例 2:
4 2
1 2 -1
3 4 -1在此示例中,无法找到一条路径从 1 通往 4,所以此时应该输出 "unconnected"。
数据范围:
1 <= n <= 1000;
1 <= m <= 10000;-100 <= v <= 100;
本题依然是单源最短路问题,求 从 节点1 到节点n 的最小费用。 但本题不同之处在于 边的权值是有负数了。
Bellman_ford算法的核心思想是 对所有边进行松弛n-1次操作(n为节点数量),从而求得目标最短路。
what is 松弛(核心)
例如一条边,节点A 到 节点B 权值为value,如图:
minDist[B] 表示 到达B节点 最小权值,minDist[B] 有哪些状态可以推出来?
状态一: minDist[A] + value 可以推出 minDist[B]
状态二: minDist[B]本身就有权值 (可能是其他边链接的节点B 例如节点C,以至于 minDist[B]记录了其他边到minDist[B]的权值)
minDist[B] 应为如何取舍。
本题我们要求最小权值,那么 这两个状态我们就取最小的
if (minDist[B] > minDist[A] + value) minDist[B] = minDist[A] + value也就是说,如果 通过 A 到 B 这条边可以获得更短的到达B节点的路径,即如果
minDist[B] > minDist[A] + value,那么我们就更新minDist[B] = minDist[A] + value,这个过程就叫做 “松弛” 。Bellman_ford算法 也是采用了动态规划的思想,即:将一个问题分解成多个决策阶段,通过状态之间的递归关系最后计算出全局最优解。
为什么松弛“n-1”次
以上是对所有边进行一次松弛之后的结果。
那么需要对所有边松弛几次才能得到 起点(节点1) 到终点(节点6)的最短距离呢?
对所有边松弛一次,相当于计算 起点到达 与起点一条边相连的节点 的最短距离。
节点数量为n,那么起点到终点,最多是 n-1 条边相连。
那么无论图是什么样的,边是什么样的顺序,我们对所有边松弛 n-1 次 就一定能得到 起点到达 终点的最短距离。
其实也同时计算出了,起点 到达 所有节点的最短距离,因为所有节点与起点连接的边数最多也就是 n-1 条边。
代码
#include<iostream>
#include<vector>
#include<climits>
using namespace std;
int main()
{int n,m,p1,p2,val;//节点数、边数、边的两个节点和边的权重。cin>>n>>m;vector<vector<int>>grid;for(int i=0;i<m;i++)//每条边用一个包含三个整数的向量表示。{cin>>p1>>p2>>val;grid.push_back({p1,p2,val});}int start=1;int end=n;vector<int>minDist(n+1,INT_MAX);minDist[start]=0;//Bellman-Ford 算法核心for(int i=1;i<n;i++)//对所有边松弛一次{for(vector<int>&side:grid)//每次松弛,都是对所有边松弛一次{int from=side[0];//边的出发点int to=side[1];//边的到达点int price=side[2];//边的权值//松弛操作//minDist[from] != INT_MAX 防止从未计算过的节点出发if(minDist[from]!=INT_MAX&&minDist[to]>minDist[from]+price){//且通过当前边到达点的最短距离可以更新,则进行更新minDist[to]=minDist[from]+price;}}}if(minDist[end]==INT_MAX)cout<<"unconnected"<<endl;else cout<<minDist[end]<<endl;//到达终点最短路径}
模拟运行结果
假设输入如下:
4 4 1 2 1 1 3 4 2 3 1 3 4 1
首先读取
n=4和m=4,初始化边的存储grid。读取边并存储在
grid中:
- 边
(1, 2, 1),grid.push_back({1, 2, 1})- 边
(1, 3, 4),grid.push_back({1, 3, 4})- 边
(2, 3, 1),grid.push_back({2, 3, 1})- 边
(3, 4, 1),grid.push_back({3, 4, 1})初始化
minDist,设置minDist[start] = 0。运行 Bellman-Ford 算法:
- 第一次松弛:
- 处理边
(1, 2, 1),更新minDist[2] = 1。- 处理边
(1, 3, 4),更新minDist[3] = 4。- 处理边
(2, 3, 1),更新minDist[3] = 2。- 处理边
(3, 4, 1),更新minDist[4] = 3。- 第二次松弛:
- 处理边
(1, 2, 1),minDist[2]保持不变。- 处理边
(1, 3, 4),minDist[3]保持不变。- 处理边
(2, 3, 1),minDist[3]保持不变。- 处理边
(3, 4, 1),minDist[4]保持不变。- 第三次松弛:
- 处理边
(1, 2, 1),minDist[2]保持不变。- 处理边
(1, 3, 4),minDist[3]保持不变。- 处理边
(2, 3, 1),minDist[3]保持不变。- 处理边
(3, 4, 1),minDist[4]保持不变。最终输出:
3
相关文章:
DAY64||dijkstra(堆优化版)精讲 ||Bellman_ford 算法精讲
dijkstra(堆优化版)精讲 题目如上题47. 参加科学大会(第六期模拟笔试) 邻接表 本题使用邻接表解决问题。 邻接表的优点: 对于稀疏图的存储,只需要存储边,空间利用率高遍历节点链接情况相对容…...
使用Git工具在GitHub的仓库中上传文件夹(超详细)
如何使用Git工具在GitHub的仓库中上传文件夹? 如果觉得博主写的还可以,点赞收藏关注噢~ 第一步:拥有一个本地的仓库 可以fork别人的仓库或者自己新创建 fork别人的仓库 或者自己创建一个仓库 按照要求填写完成后,点击按钮创建…...
Python酷库之旅-第三方库Pandas(218)
目录 一、用法精讲 1021、pandas.DatetimeIndex.inferred_freq属性 1021-1、语法 1021-2、参数 1021-3、功能 1021-4、返回值 1021-5、说明 1021-6、用法 1021-6-1、数据准备 1021-6-2、代码示例 1021-6-3、结果输出 1022、pandas.DatetimeIndex.indexer_at_time方…...
斗鱼大数据面试题及参考答案
MySQL 索引及引擎区别 一、MySQL 索引 索引是一种数据结构,用于快速查找数据库中的数据。它就像是一本书的目录,通过索引可以快速定位到需要的数据行,而不用全表扫描。 普通索引 普通索引是最基本的索引类型,它没有任何限制,可以在一个或多个列上创建。例如,在一个用户表…...
后仿真中的GLS测试用例的选取规则
一 仿真目的 门级仿真的主要目的,从根本上来说,是确保在物理实现阶段所应用的SDC(Standard Delay Constraint,标准延迟约束文件)中的各项约束条件准确无误地反映了设计的初衷和要求。这一环节在芯片设计的整体流程中占据着至关重要的地位,因为它直接关系到最终芯片的物理…...
对接阿里云实人认证
对接阿里云实人认证-身份二要素核验接口整理 目录 应用场景 接口文档 接口信息 请求参数 响应参数 调试 阿里云openApi平台调试 查看调用结果 查看SDK示例 下载SDK 遇到问题 本地调试 总结 应用场景 项目有一个提现的场景,需要用户真实的身份信息。 …...
UI库架构设计
UI库架构设计 分层 rc-xxx,提供基础组件,unstyled component (headless) ,只具备功能交互,不具备UI表现样式体系基础组件复合组件,Search:Input Select ,IconButton:Icon Button业…...
电子应用产品设计方案-9:全自动智能马桶系统设计方案
一、系统概述 本全自动智能马桶系统旨在提供舒适、卫生、便捷和智能化的如厕体验。通过融合多种传感器技术、电子控制单元和机械执行机构,实现马桶的自动冲洗、座圈加热、臀部清洗、烘干等功能,并具备智能感应、用户个性化设置和健康监测等特色功能。 二…...
My_SQL day3
知识点:约束 1.dafault 默认约束 2.not null 非空约束 3.unique key 唯一约束 4.primary key 主键约束 5.anto_increment 自增长约束 6.foreign key 外键约束 知识点:表关系 1.一对一 2.一对多 3.多对多 知识点:约束 1.default 默认约束 …...
【代码随想录day31】【C++复健】56. 合并区间;738.单调递增的数字
56. 合并区间 遇到了三个问题,一一说来: 1 比较应该按左区间排序,我却写了右区间。由于本题是合并区间,判断是否连续显然是用下一个的左区间与前一个的右区间比较,属于没想清楚了。 2 在写for循环时写成了如下的代码…...
jmeter常用配置元件介绍总结之逻辑控制器
系列文章目录 安装jmeter jmeter常用配置元件介绍总结之逻辑控制器 逻辑控制器1.IF控制器2.事务控制器3.循环控制器4.While控制器5.ForEach控制器6.Include控制器7.Runtime控制器8.临界部分控制器9.交替控制器10.仅一次控制器11.简单控制器12.随机控制器13.随机顺序控制器14.吞…...
解决Windows远程桌面 “为安全考虑,已锁定该用户账户,原因是登录尝试或密码更改尝试过多。请稍后片刻再重试,或与系统管理员或技术支持联系“问题
当我们远程连接服务器连接不上并提示“为安全考虑,已锁定该用户账户,原因是登录尝试或密码更改尝试过多。请稍候片刻再重试,或与系统管理员或技术支持联系”时,根本原因是当前计算机远程连接时输入了过多的错误密码,触…...
中文书籍对《人月神话》的引用(161-210本):微软的秘密
中文书籍对《人月神话》的引用(第001到160本)>> 《人月神话》于1975年出版,1995年出二十周年版。自出版以来,该书被大量的书籍和文章引用,直到现在热潮不退。 2023年,清华大学出版社推出《人月神话》…...
关于写React的一些反思和总结
这两个星期我都一直在写IT资产管理这个模块。关于这个模块,前端和后端都是我来处理,对于后端,我碰到了很多问题,但是很多问题都可以在比较短的时间内解决,而且不会说完全没有头绪的那种,这一方面源于我本身…...
Qt 每日面试题 -10
91、Qt设计界面有哪些方式? 手工编写创建界面的代码︰此方法比较复杂,不够直观;使用Qt Designer界面编辑器设计︰可直接拖放控件、设置控件的属性,简单、直观、易于操作;动态加载Ul文件并生成界面︰(QUiLoader类加载xx.ui)此方法很灵活,当需…...
三正科技笔试题
(15题,45分钟,闭卷) 一、( 8 分 )请问以下程序输出什么结果? char *getStr(void) 。 { char p[] "hellow world"; return p; } void test(void) { ch…...
Selective attention improves transformer详细解读
Selective attention improves transformer Google 2024.10.3 一句话:简单且无需额外参数的选择性注意力机制,通过选择性忽略不相关信息并进行上下文剪枝,在不增加计算复杂度的情况下显著提升了Transformer模型的语言建模性能和推理效率。 论…...
git配置用户信息
在 Git 中配置用户信息,主要是设置你的用户名和电子邮件地址,这些信息会被 Git 用来记录提交的作者信息。以下是配置用户信息的步骤: 打开命令行工具。 设置你的用户名: git config --global user.name "你的名字"例如…...
【eNSP】路由基础与路由来源——静态路由实验
路由是数据包从源地址到目的地址的传输路径,静态路由是指网络管理员手动配置的路由条目,用于指定数据包从源地址到目的地址的固定路径。以下是关于静态路由的详细介绍。 一、路由的基础知识点 路由的定义: 路由是指在计算机网络中ÿ…...
Python Web 应用开发基础知识
Python Web 应用开发基础知识 引言 随着互联网的快速发展,Web 应用程序的需求日益增加。Python 作为一种简单易学且功能强大的编程语言,已经成为 Web 开发中广受欢迎的选择之一。本文将深入探讨 Python Web 开发的基础知识,包括常用框架、基…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...


