fast-api后端 + fetch 前端流式文字响应
fast-api后端 + fetch 前端流式文字响应
- fast-api后台接口
- 流式响应
- 前端
- fetch 流式文本数据处理
fast-api后台接口
流式响应
from fastapi.responses import StreamingResponse
from tqdm import tqdm
from pydantic import BaseModelclass ItemDataSingle(BaseModel):data: strasync def responce_text_streammer(data): _data = data.data# 假设你发送过来的data = json.loads(_data)for dat in tqdm(data):dat = your_worker_function(dat)# 给每条数据一个分割标识yield json.dumps(dat,ensure_ascii=False) + "@@+" @app.post("/batchtext2furniture")
async def batchtext2furniture(data: ItemDataSingle,):""":arg"""# mongodbreturn StreamingResponse(responce_text_streammer(data))
前端
fetch 流式文本数据处理
var req_data = {data: JSON.stringify({}),//youdata};
let charsReceived = 0;
const startTime = Date.now();
let result = "";
let num_results = 0;
const decoder = new TextDecoder("utf-8");
fetch("/batchtext2furniture", {method: "POST",headers: { "Content-Type": "application/json" },body: req_data,stream: true,}).then((response) => {const reader = response.body.getReader();return new ReadableStream({async start(controller) {let resev_s = true;while (resev_s) {const { done, value } = await reader.read();if (done) {controller.close();resev_s = false;break;}charsReceived += value.length;const chunk = value;result += decoder.decode(chunk);console.log("Received " + charsReceived + " characters");const responseTime = (Date.now() - startTime) / 1000;num_results += 1;if (result.endsWith("@@+")) {console.log("接收到分割符号");let parts = result.split("@@+");let lastPart = parts[parts.length - 2];// 解析 JSONvar json_data = JSON.parse(lastPart);// 前端具体对每段数据的处理// ......} else {console.log("not endswith @@+");}console.log("数据赋值完成" );controller.enqueue(value);}},});}).then((stream) => {console.log(stream);console.log(stream, "stream");console.log(stream.size);}).catch((error) => {console.error("Error:", error);}).finally(() => {yourfinallyworker();});const endTime = Date.now();console.log(endTime - startTime, "搜索时间");}
相关文章:
fast-api后端 + fetch 前端流式文字响应
fast-api后端 fetch 前端流式文字响应 fast-api后台接口流式响应 前端fetch 流式文本数据处理 fast-api后台接口 流式响应 from fastapi.responses import StreamingResponse from tqdm import tqdm from pydantic import BaseModelclass ItemDataSingle(BaseModel):data: …...
Qt 的 QThread:多线程编程的基础
Qt 的 QThread:多线程编程的基础 在现代应用程序中,尤其是需要处理大量数据、进行长时间计算或者进行 I/O 操作时,多线程编程变得至关重要。Qt 提供了一个功能强大且易于使用的线程类 QThread,可以帮助开发者在 Qt 应用程序中实现…...
周末总结(2024/11/16)
工作 人际关系核心实践: 要学会随时回应别人的善意,执行时间控制在5分钟以内 坚持每天早会打招呼 遇到接不住的话题时拉低自己,抬高别人(无阴阳气息) 朋友圈点赞控制在5min以内,职场社交不要放在5min以外 职场的人际关系在面对利…...
Chrome和Chromium的区别?浏览器引擎都用的哪些?浏览器引擎的作用?
Chrome和Chromium的区别? Chrome是Google专属的产品,它是基于后者Chromium开源引擎开发。第三方浏览器公司为了加快开发流程,会直接选择开源的浏览器引擎,例如Chromium. Google将Chromium开源,本意为了打破浏览器被其他公司控制的…...

流程图图解@RequestBody @RequestPart @RequestParam @ModelAttribute
RequestBody 只能用一次,因为只有一个请求体 #mermaid-svg-8WZfkzl0GPvOiNj3 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-8WZfkzl0GPvOiNj3 .error-icon{fill:#552222;}#mermaid-svg-8WZfkzl0GPvOiNj…...
AutoUpdater.NET 实现 dotNET应用自动更新
AutoUpdater.NET 是一款用于WPF、Winform软件版本更新的框架,类似框架还有Squirrel、WinSparkle、NetSparkle、Google Omaha。 一、安装AutoUpdater.NET 首先,您需要在项目中安装AutoUpdater.NET库。您可以通过NuGet包管理器来安装它。在Visual Studio中…...

108. UE5 GAS RPG 实现地图名称更新和加载关卡
在这一篇里,我们将实现对存档的删除功能,在删除时会有弹框确认。接着实现获取玩家的等级和地图名称和存档位置,我们可以通过存档进入游戏,玩家在游戏中可以在存档点存储存档。 实现删除存档 删除存档需要一个弹框确认࿰…...

对称加密与非对称加密:密码学的基石及 RSA 算法详解
对称加密与非对称加密:密码学的基石及 RSA 算法详解 在当今数字化的时代,信息安全至关重要。对称加密和非对称加密作为密码学中的两种基本加密技术,为我们的数据安全提供了强大的保障。本文将深入探讨对称加密和非对称加密的特点、应用场景&…...
排列问题方法总结(递归+迭代)
递归 一、逐步生成结果法(无序) #include<iostream> #include<vector> #include<string> #include<algorithm>using namespace std;vector<string> GetChild(int n,int curIndex){vector<string> now;vector&…...

C#从入门到放弃
C#和.NET的区别 C# C#是一个编程语言 .NET .NET是一个在window下创建程序的框架 .NET框架不仅局限于C#,它还可以支持很多语言 .NET包括了2个组件,一个叫CLR(通用语言运行时),另一个是用来构建程序的类库 CLR 用C写一个程序,在一台8688的机器…...
视频质量评价学习笔记
目录 MD VQA:大淘宝团队: ReIQA KVQ 视频质量评价学习笔记 MD VQA:大淘宝团队: https://github.com/kunyou99/MD-VQA_cvpr2023?tabreadme-ov-file ReIQA GitHub - avinabsaha/ReIQA: Official implementation for CVPR2023 Paper "Re-IQA : U…...
OpenCV、YOLO、VOC、COCO之间的关系和区别
OpenCV、YOLO、COCO 和 VOC 是计算机视觉和深度学习领域常见的几个名词,它们分别代表不同的工具、算法和数据集,之间有一些联系和区别。下面分别说明它们的定义、用途以及相互关系。 1. OpenCV(Open Source Computer Vision Library…...
Pandas进行周期与时间戳转换
时间序列数据在数据分析和金融领域非常常见,处理这些数据时,通常会面临周期(Period)与时间戳(Timestamp)之间的转换需求。理解和掌握这种转换,对于时间序列数据的清洗、预处理以及进一步分析至关重要。Python 中的 pandas 库提供了一系列便捷的函数来帮助处理这些时间序…...

【GPTs】Get Simpsonized:一键变身趣味辛普森角色
博客主页: [小ᶻZ࿆] 本文专栏: AIGC | GPTs应用实例 文章目录 💯GPTs指令💯前言💯Get Simpsonized主要功能适用场景优点缺点使用方式 💯小结 💯GPTs指令 中文翻译: 指令保护和安全规则&…...
概率论公式整理
1 概率 古典概型和几何概型 古典概型(有限等可能)几何概型(无限等可能) 条件概率 P ( A ∣ B ) P ( A B ) P ( B ) P(A|B) \frac{P(AB)}{P(B)} P(A∣B)P(B)P(AB) 全概率公式 P ( B ) ∑ i 1 n P ( A i ) P ( B ∣ A i ) P…...

【C++】—— stack和queue的模拟实现
前言 stack 和 queue使用起来都非常简单,现在来模拟实现一下,理解其底层的原理。 在实现之前,应该知道,stack 和 queue 都是容器适配器,通过看官网文件也可以看出来;其默认的容器都是dequeÿ…...
管家婆工贸ERP BR039.采购订单关联MRP明细表
最低适用版本: 工贸系列 23.8 插件简要功能说明: 采购订单明细表,支持显示采购订单明细上游请购单明细关联的MRP中对应销售订单明细产成品相关信息更多细节描述见下方详细文档 插件操作视频: 进销存类定制插件--采购订单关联M…...

SwanLab安装教程
SwanLab是一款开源、轻量级的AI实验跟踪工具,提供了一个跟踪、比较、和协作实验的平台,旨在加速AI研发团队100倍的研发效率。 其提供了友好的API和漂亮的界面,结合了超参数跟踪、指标记录、在线协作、实验链接分享、实时消息通知等功能&…...
MySQL EXPLAIN,数据库调优的秘密通道
EXPLAIN 是 MySQL 中一个非常有用的工具,它用于分析 SQL 查询的执行计划。通过 EXPLAIN,你可以获取 MySQL 是如何准备执行你的 SQL 语句的,包括使用的索引、连接类型、扫描的行数等信息。这些信息对于优化查询性能、识别性能瓶颈至关重要。 使…...

利用redis的key失效监听器KeyExpirationEventMessageListener作任务定时提醒功能
某需求: 要求在任务截止日期的前3天时,系统自动给用户发一条消息提醒。 用定时任务的话感觉很不舒服。间隔时间不好弄。不能精准卡到那个点。 由于系统简单,没有使用消息列队,也不能使用延时队列来做。 用Timer的话开销还挺大的&a…...

微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...

【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...