使用YOLOv9进行图像与视频检测
大家好,YOLOv9 与其前身v8一样,专注于识别和精确定位图像和视频中的对象。本文将介绍如何使用YOLOv9进行图像与视频检测,自动驾驶汽车、安全系统和高级图像搜索等应用在很大程度上依赖于此功能,YOLOv9 引入了比 YOLOv8 更令人印象深刻的创新点。
1.安装必要的库
pip install opencv-python ultralytics
2.导入库
import cv2
from ultralytics import YOLO
3.选择模型型号尺寸
model = YOLO("yolov9c.pt")
这里我们选择yolov9c.pt,大家可以选择不同的模型尺寸进行检测,并比较不同的型号并权衡它们各自的优缺点。
4.编写函数预测和检测图像和视频中的对象
def predict(chosen_model, img, classes=[], conf=0.5):if classes:results = chosen_model.predict(img, classes=classes, conf=conf)else:results = chosen_model.predict(img, conf=conf)return resultsdef predict_and_detect(chosen_model, img, classes=[], conf=0.5, rectangle_thickness=2, text_thickness=1):results = predict(chosen_model, img, classes, conf=conf)for result in results:for box in result.boxes:cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),(int(box.xyxy[0][2]), int(box.xyxy[0][3])), (255, 0, 0), rectangle_thickness)cv2.putText(img, f"{result.names[int(box.cls[0])]}",(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), text_thickness)return img, results
predict() 这个函数采用三个参数:
-
chosen_model:用于预测的训练模型 -
img:要进行预测的图像 -
classes:(可选)要将预测筛选到的类名列表 -
conf:(可选)要考虑的预测的最小置信度阈值
函数首先检查是否提供classes参数。如果是,则使用classes参数调用该chosen_model.predict() 方法,该参数仅将预测筛选为这些类。否则,将调用该 chosen_model.predict() 方法时不带 classes 参数,该参数将返回所有预测。
该 conf 参数用于筛选出置信度分数低于指定阈值的预测。这对于消除误报很有用。
该函数返回预测结果列表,其中每个结果都包含以下信息:
-
name:预测类的名称 -
conf:预测的置信度分数 -
box:预测对象的边界框
predict_and_detect() 函数采用与 predict() 函数相同的参数,但除了预测结果外,它还返回带注释的图像。
该函数首先调用该 predict() 函数以获取预测结果。然后,它循环访问预测结果,并在每个预测对象周围绘制一个边界框。预测类的名称也写在边界框上方。
该函数返回一个包含带注释的图像和预测结果的元组。
以下是这两个函数之间差异的摘要:
-
该
predict()函数仅返回预测结果,而该predict_and_detect()函数还返回带注释的图像。 -
该
predict_and_detect()函数是predict()函数的包装器,这意味着它在内部调用函数predict()。
5.使用 YOLOv9 检测图像
# read the image
image = cv2.imread("YourImagePath")
result_img, _ = predict_and_detect(model, image, classes=[], conf=0.5)
如果要检测特定类,只需在类列表classes中输入对象的 ID 号即可。
6.保存并绘制结果图像
cv2.imshow("Image", result_img)
cv2.imwrite("YourSavePath", result_img)
cv2.waitKey(0)
7.使用 YOLOv9 检测视频
video_path = r"YourVideoPath"
cap = cv2.VideoCapture(video_path)
while True:success, img = cap.read()if not success:breakresult_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)cv2.imshow("Image", result_img)cv2.waitKey(1)
8.保存结果视频
# 定义保存函数
def create_video_writer(video_cap, output_filename):# grab the width, height, and fps of the frames in the video stream.frame_width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))frame_height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))fps = int(video_cap.get(cv2.CAP_PROP_FPS))#初始化fourcc = cv2.VideoWriter_fourcc(*'MP4V')writer = cv2.VideoWriter(output_filename, fourcc, fps,(frame_width, frame_height))return writer
只需使用上面的函数和代码即可:
output_filename = "YourFilename"
writer = create_video_writer(cap, output_filename)video_path = r"YourVideoPath"
cap = cv2.VideoCapture(video_path)
while True:success, img = cap.read()if not success:breakresult_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)writer.write(result_img)cv2.imshow("Image", result_img)cv2.waitKey(1)
writer.release()相关文章:
使用YOLOv9进行图像与视频检测
大家好,YOLOv9 与其前身v8一样,专注于识别和精确定位图像和视频中的对象。本文将介绍如何使用YOLOv9进行图像与视频检测,自动驾驶汽车、安全系统和高级图像搜索等应用在很大程度上依赖于此功能,YOLOv9 引入了比 YOLOv8 更令人印象…...
C# 中的 LINQ:轻松处理集合和数据
C#中的LINQ(Language Integrated Query),这是一个非常强大且实用的功能,可以简化集合操作和数据查询。以下是一篇关于C#中LINQ使用的文章。 引言 LINQ(Language Integrated Query)是C#语言的一个重要特性…...
【征稿倒计时!华南理工大学主办 | IEEE出版 | EI检索稳定】2024智能机器人与自动控制国际学术会议 (IRAC 2024)
#华南理工大学主办!#IEEE出版!EI稳定检索!#组委阵容强大!IEEE Fellow、国家杰青等学术大咖领衔出席!#会议设置“优秀论文”“优秀青年学者报告”“优秀海报”等评优奖项 2024智能机器人与自动控制国际学术会议 &#…...
RHCE的学习(20)
变量5种赋值方式 shell中变量赋值5种方式,其中采用name10的方法称A 直接赋值 nameB read命令 read v1C 使用命令行参数 ($1 $2 $3 ..) name$1D 使用命令的输入 username$(whoami)E 从文件读取 #cut -d : -f1 /etc/passwd > /user.listfor…...
控制器ThinkPHP6
五、控制器中对数组值的返回 在做接口服务时,很多时候回使用数组作为返回值,那么数组如何返回成 json呢? 在 tp6 中返回json 很简单,直接使用 json 进行返回即可,例如: public function index(){$resarra…...
1. Django中的URL调度器 (项目创建与简单测试)
1. 创建 Django 项目 运行以下命令创建一个名为 blog_project 的 Django 项目: django-admin startproject blog_project2. 创建博客应用 Django 中,项目可以包含多个应用。创建一个名为 blog 的应用: cd blog_project python manage.py …...
学习python的第十天之数据类型——dict字典
学习python的第十天之数据类型——dict字典 Python 中的字典(Dictionary)是一个非常强大的内置数据类型,它用来存储键值对(key-value pairs)信息。字典是无序的,这意味着它们不会记录你添加键值对的顺序&am…...
华为Mate 70临近上市:代理IP与抢购攻略
随着科技的飞速发展,智能手机已经成为我们日常生活中不可或缺的一部分。而在众多智能手机品牌中,华为一直以其卓越的技术和创新力引领着行业的发展。近日,华为Mate 70系列手机的发布会正式定档在11月26日,这一消息引发了众多科技爱…...
进程信号
目录 信号入门 1. 生活角度的信号 2. 技术应用角度的信号 3. 注意 4. 信号概念 5. 用kill -l命令可以察看系统定义的信号列表 6. 信号处理常见方式概览 产生信号 1. 通过终端按键产生信号 Core Dump 2. 调用系统函数向进程发信号 3. 由软件条件产生信号 4. 硬件异…...
RT-DETR融合GhostModel V3及相关改进思路
RT-DETR使用教程: RT-DETR使用教程 RT-DETR改进汇总贴:RT-DETR更新汇总贴 《GhostNetV3: Exploring the Training Strategies for Compact Models》 一、 模块介绍 论文链接:https://arxiv.org/pdf/2404.11202v1 代码链接:https:…...
JVM有哪些垃圾回收器
Serial垃圾回收器:单线程收集器,适用于客户端模式下的小型应用。 使用复制算法回收新生代,使用标记-整理算法回收老年代。 在进行垃圾回收时,会停止所有用户线程(Stop-The-World, STW)。Serial Old垃圾回收…...
EWM 打印
目录 1 简介 2 后台配置 3 主数据 4 业务操作 1 简介 打印即输出管理(output management)利用“条件表”那一套理论实现。而当打印跟 EWM 集成到一起时,也需要利用 PPF(Post Processing Framework)那一套理论。而…...
前端文件优化
一、图片优化 计算图片大小 对于一张100*100像素的图片来说,图像上有 10000 个像素点,如果每个像素的值是 RGBA 存储的话,那么也就是说每个像素有 4 个通道,每个通道 1 个字节(8 位 1个字 节)࿰…...
电脑怎么自动切换IP地址
在现代网络环境中,电脑自动切换IP地址的需求日益增多。无论是出于网络安全、隐私保护,还是为了绕过地域限制,自动切换IP地址都成为了许多用户关注的焦点。本文将详细介绍几种实现电脑自动切换IP地址的方法,以满足不同用户的需求。…...
hbase集成phoenix
1.环境 环境准备 三台节点zookeeper三节点hadoop三节点hbase三节点 2.pheonix集成 官网下载地址,需挂梯子,使用官网推荐的对应hbase版本即可 https://phoenix.apache.org/download.html下载及解压 wget https://dlcdn.apache.org/phoenix/phoenix-…...
单片机智能家居火灾环境安全检测
目录 前言 一、本设计主要实现哪些很“开门”功能? 二、电路设计原理图 电路图采用Altium Designer进行设计: 三、实物设计图 四、程序源代码设计 五、获取资料内容 前言 在现代社会,火灾安全始终是人们关注的重点问题。随着科技的不…...
Git_2024/11/16
文章目录 前言Git是什么核心概念工作流程常见术语解读Git的优势 Git与SVN对比SVNGit总结 Git配置流程及指令环境配置获取Git仓库本地初始化远程克隆 工作目录、暂存区、版本库文件的两种状态本地仓库操作远程仓库操作Git分支Git标签IntelliJ IDEA使用Git回滚代码 GitHub配置流程…...
Java基础夯实——2.1Java常见的线程创建方式
在 Java 中,线程是实现并发编程的核心。主要有以下三种: 继承 Thread 类实现 Runnable 接口实现 Callable 接口并结合 Future 使用 1. 继承 Thread 类 继承 Thread 类是创建线程的最简单方式之一。通过扩展 Thread 类并重写其 run 方法,可…...
【Docker容器】一、一文了解docker
1、什么是docker? 1.1 docker概念 Docker是一种容器化平台,通过使用容器技术,Docker允许开发人员将应用程序和其依赖项打包到一个独立的、可移植的容器中。每个容器具有自己的文件系统、环境变量和资源隔离,从而使应用程序可以在…...
Spring:IOC实例化对象bean的方式
对象已经能交给Spring的IOC容器来创建了,但是容器是如何来创建对象的呢? 就需要研究下bean的实例化过程,在这块内容中主要解决两部分内容,分别是 bean是如何创建的实例化bean的三种方式,构造方法,静态工厂和实例工厂 在讲解这…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
tomcat指定使用的jdk版本
说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...
vue3 daterange正则踩坑
<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...
绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化
iOS 应用的发布流程一直是开发链路中最“苹果味”的环节:强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说,这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发(例如 Flutter、React Na…...
