当前位置: 首页 > news >正文

前馈神经网络 (Feedforward Neural Network, FNN)

代码功能

网络定义:
使用 torch.nn 构建了一个简单的前馈神经网络。
隐藏层使用 ReLU 激活函数,输出层使用 Sigmoid 函数(适用于二分类问题)。
数据生成:
使用经典的 XOR 问题作为数据集。
数据点为二维输入,目标为 0 或 1。
训练过程:
使用二分类交叉熵损失函数 BCELoss。
优化器为 Adam,具有较快的收敛速度。
损失可视化:
每次训练后记录损失并绘制损失曲线。
结果输出:
显示最终预测值,并与真实标签进行比较。
在这里插入图片描述

代码

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt# 1. 定义前馈神经网络
class FeedforwardNN(nn.Module):def __init__(self, input_dim, hidden_dim, output_dim):super(FeedforwardNN, self).__init__()self.fc = nn.Sequential(nn.Linear(input_dim, hidden_dim),  # 输入层到隐藏层nn.ReLU(),  # 激活函数nn.Linear(hidden_dim, output_dim),  # 隐藏层到输出层nn.Sigmoid()  # 输出层的激活函数(适用于二分类问题))def forward(self, x):return self.fc(x)# 2. 创建 XOR 数据集
def create_xor_data():X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32)y = np.array([[0], [1], [1], [0]], dtype=np.float32)return X, y# 3. 训练前馈神经网络
def train_fnn():# 数据准备X, y = create_xor_data()X = torch.tensor(X, dtype=torch.float32)y = torch.tensor(y, dtype=torch.float32)# 初始化网络、损失函数和优化器input_dim = X.shape[1]hidden_dim = 10output_dim = 1model = FeedforwardNN(input_dim, hidden_dim, output_dim)criterion = nn.BCELoss()  # 二分类交叉熵损失optimizer = optim.Adam(model.parameters(), lr=0.01)# 训练网络epochs = 1000loss_history = []for epoch in range(epochs):# 前向传播outputs = model(X)loss = criterion(outputs, y)# 反向传播与优化optimizer.zero_grad()loss.backward()optimizer.step()# 记录损失loss_history.append(loss.item())if (epoch + 1) % 100 == 0:print(f"Epoch [{epoch + 1}/{epochs}], Loss: {loss.item():.4f}")# 绘制损失曲线plt.plot(loss_history)plt.xlabel('Epoch')plt.ylabel('Loss')plt.title('Training Loss Curve')plt.show()# 输出训练结果with torch.no_grad():predictions = model(X).round()print("Predictions:", predictions.numpy())print("Ground Truth:", y.numpy())# 运行训练
if __name__ == "__main__":train_fnn()

相关文章:

前馈神经网络 (Feedforward Neural Network, FNN)

代码功能 网络定义: 使用 torch.nn 构建了一个简单的前馈神经网络。 隐藏层使用 ReLU 激活函数,输出层使用 Sigmoid 函数(适用于二分类问题)。 数据生成: 使用经典的 XOR 问题作为数据集。 数据点为二维输入&#xff…...

【Python进阶】Python中的数据库交互:使用SQLite进行本地数据存储

1、数据持久化与访问效率 数据持久化是指程序运行过程中产生的数据能够长期保存,即使程序关闭或系统重启后仍可读取和修改。通过数据库,我们可以确保数据持久化的同时,实现数据的快速访问。例如,银行系统需要实时更新账户余额&am…...

ZooKeeper单机、集群模式搭建教程

单点配置 ZooKeeper在启动的时候,默认会读取/conf/zoo.cfg配置文件,该文件缺失会报错。因此,我们需要在将容器/conf/挂载出来,在制定的目录下,添加zoo.cfg文件。 zoo.cfg logback.xml 配置文件的信息可以从二进制包…...

函数指针示例

目录&#xff1a; 代码&#xff1a; main.c #include <stdio.h> #include <stdlib.h>int Max(int x, int y); int Min(int x, int y);int main(int argc, char**argv) {int x,y;scanf("%d",&x);scanf("%d",&y);int select;printf(&q…...

vue如何实现组件切换

一、使用条件渲染 (v-if) <template><div><button click"currentView ComponentA">Show Component A</button><button click"currentView ComponentB">Show Component B</button><component-a v-if"curren…...

计算机视觉 1-8章 (硕士)

文章目录 零、前言1.先行课程&#xff1a;python、深度学习、数字图像处理2.查文献3.环境安装 第一章&#xff1a;概论1.计算机视觉的概念2.机器学习 第二章&#xff1a;图像处理相关基础1.图像的概念2.图像处理3.滤波器4.卷积神经网络CNN5.图像的多层表示&#xff1a;图像金字…...

整数唯一分解定理

整数唯一分解定理&#xff0c;也称为算术基本定理&#xff0c;是由德国数学家高斯在其著作《算术研究》中首次提出的。本文回顾整数唯一分解定理以及对应的几个重要结论。 一、整数唯一分解定理 整数唯一分解定理&#xff0c;也称为算术基本定理&#xff0c;是数论中的一个重…...

Grass脚本2倍速多账号

前言&#xff0c;小编也是第一次撸空投&#xff0c;我是抱着试一试的态度&#xff0c;梦想总是要有的万一白嫖了呢 Grass 是什么&#xff1f; Grass 扩展程序是一款创新的工具&#xff0c;它可以帮助您释放未使用的网络资源的力量。 通过分享您的剩余带宽&#xff0c;您可以赚…...

15分钟学 Go 第 56 天:架构设计基本原则

第56天&#xff1a;架构设计基本原则 学习目标 理解和掌握基本的架构设计原则&#xff0c;以提升软件系统的可维护性、可扩展性和可重用性。 内容提纲 架构设计原则概述常见架构设计原则 单一职责原则 (SRP)开放/封闭原则 (OCP)里氏替换原则 (LSP)接口分离原则 (ISP)依赖反…...

HTML5 Video(视频)

HTML5 Video(视频) HTML5视频是现代网页设计中不可或缺的一部分,它允许开发者在网页中嵌入视频内容,为用户提供丰富多样的媒体体验。本文将深入探讨HTML5视频的各个方面,包括其基本用法、支持的格式、自定义播放器、浏览器兼容性以及最佳实践。 一、HTML5视频的基本用法 …...

开源模型应用落地-qwen模型小试-Qwen2.5-7B-Instruct-tool usage入门-串行调用多个tools(三)

一、前言 Qwen-Agent 是一个利用开源语言模型Qwen的工具使用、规划和记忆功能的框架。其模块化设计允许开发人员创建具有特定功能的定制代理,为各种应用程序提供了坚实的基础。同时,开发者可以利用 Qwen-Agent 的原子组件构建智能代理,以理解和响应用户查询。 本篇将介绍如何…...

MySQL:表设计

表的设计 从需求中获得类&#xff0c;类对应到数据库中的实体&#xff0c;实体在数据库中表现为一张一张的表&#xff0c;类中的属性就对应着表中的字段&#xff08;也就是表中的列&#xff09; 表设计的三大范式&#xff1a; 在数据库设计中&#xff0c;三大范式&#xff0…...

173. 二叉搜索树迭代器【 力扣(LeetCode) 】

文章目录 零、原题链接一、题目描述二、测试用例三、解题思路四、参考代码 零、原题链接 173. 二叉搜索树迭代器 一、题目描述 实现一个二叉搜索树迭代器类BSTIterator &#xff0c;表示一个按中序遍历二叉搜索树&#xff08;BST&#xff09;的迭代器&#xff1a; BSTIterato…...

大三学生实习面试经历(1)

最近听了一位学长的建议&#xff0c;不能等一切都准备好再去开始&#xff0c;于是就开始了简历投递&#xff0c;恰好简历过了某小厂的初筛&#xff0c;开启了线上面试&#xff0c;记录了一些问题&#xff1a; &#xff08;通过面试也确实了解到了自己在某些方面确实做的还不够…...

【论文复现】STM32设计的物联网智能鱼缸

&#x1f4dd;个人主页&#x1f339;&#xff1a;Eternity._ &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; ❀STM32设计的物联网智能鱼缸 【1】项目功能介绍【2】设计需求总结【3】项目硬件模块组成 1.2 设计思路【1】整体设计思路【2】ESP8266工作模式…...

常见长选项和短选项对应表

长选项和短选项的等效形式 在命令行工具中&#xff0c;这种长选项&#xff08;如--delete&#xff09;和短选项&#xff08;如-d&#xff09;等效的情况很常见。例如--verbose和-v&#xff08;用于输出详细信息&#xff09;&#xff0c;--quiet和-q&#xff08;用于安静模式&a…...

Ubuntu24 上安装搜狗输入法

link 首先在终端中依次输入以下代码 sudo apt update sudo apt install fcitx 找到语言支持 在终端中依次输入 sudo cp /usr/share/applications/fcitx.desktop /etc/xdg/autostart/ sudo apt purge ibus 进入网页 搜狗输入法linux-首页​ shurufa.sogou.com/linux 找到刚才下…...

【AI图像生成网站Golang】JWT认证与令牌桶算法

AI图像生成网站 目录 一、项目介绍 二、雪花算法 三、JWT认证与令牌桶算法 四、项目架构 五、图床上传与图像生成API搭建 六、项目测试与调试(等待更新) 三、JWT认证与令牌桶算法 在现代后端开发中&#xff0c;用户认证和接口限流是确保系统安全性和性能的两大关键要素…...

关于强化学习的一份介绍

在这篇文章中&#xff0c;我将介绍与强化学习有关的一些东西&#xff0c;具体包括相关概念、k-摇臂机、强化学习的种类等。 一、基本概念 所谓强化学习就是去学习&#xff1a;做什么才能使得数值化的收益信号最大化。学习者不会被告知应该采取什么动作&#xff0c;而是必须通…...

Python3.11.9+selenium,获取图片验证码以及输入验证码数字

Python3.11.9+selenium,获取图片验证码以及输入验证码数字 1、遇到问题:登录或修改密码需要验证码 2、解决办法: 2.1、安装ddddocr pip install ddddocr 2.2、解析验证码函数 import ddddocr def get_capcha_text():#获取验证码图片ele_pic = driver.find_element(By.XPAT…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中&#xff0c;如何在保障应用高可用的同时有效地管理资源&#xff0c;一直是运维人员和开发者关注的重点。随着微服务架构的普及&#xff0c;集群内各个服务的负载波动日趋明显&#xff0c;传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...

二维FDTD算法仿真

二维FDTD算法仿真&#xff0c;并带完全匹配层&#xff0c;输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...