前馈神经网络 (Feedforward Neural Network, FNN)
代码功能
网络定义:
使用 torch.nn 构建了一个简单的前馈神经网络。
隐藏层使用 ReLU 激活函数,输出层使用 Sigmoid 函数(适用于二分类问题)。
数据生成:
使用经典的 XOR 问题作为数据集。
数据点为二维输入,目标为 0 或 1。
训练过程:
使用二分类交叉熵损失函数 BCELoss。
优化器为 Adam,具有较快的收敛速度。
损失可视化:
每次训练后记录损失并绘制损失曲线。
结果输出:
显示最终预测值,并与真实标签进行比较。
代码
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt# 1. 定义前馈神经网络
class FeedforwardNN(nn.Module):def __init__(self, input_dim, hidden_dim, output_dim):super(FeedforwardNN, self).__init__()self.fc = nn.Sequential(nn.Linear(input_dim, hidden_dim), # 输入层到隐藏层nn.ReLU(), # 激活函数nn.Linear(hidden_dim, output_dim), # 隐藏层到输出层nn.Sigmoid() # 输出层的激活函数(适用于二分类问题))def forward(self, x):return self.fc(x)# 2. 创建 XOR 数据集
def create_xor_data():X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32)y = np.array([[0], [1], [1], [0]], dtype=np.float32)return X, y# 3. 训练前馈神经网络
def train_fnn():# 数据准备X, y = create_xor_data()X = torch.tensor(X, dtype=torch.float32)y = torch.tensor(y, dtype=torch.float32)# 初始化网络、损失函数和优化器input_dim = X.shape[1]hidden_dim = 10output_dim = 1model = FeedforwardNN(input_dim, hidden_dim, output_dim)criterion = nn.BCELoss() # 二分类交叉熵损失optimizer = optim.Adam(model.parameters(), lr=0.01)# 训练网络epochs = 1000loss_history = []for epoch in range(epochs):# 前向传播outputs = model(X)loss = criterion(outputs, y)# 反向传播与优化optimizer.zero_grad()loss.backward()optimizer.step()# 记录损失loss_history.append(loss.item())if (epoch + 1) % 100 == 0:print(f"Epoch [{epoch + 1}/{epochs}], Loss: {loss.item():.4f}")# 绘制损失曲线plt.plot(loss_history)plt.xlabel('Epoch')plt.ylabel('Loss')plt.title('Training Loss Curve')plt.show()# 输出训练结果with torch.no_grad():predictions = model(X).round()print("Predictions:", predictions.numpy())print("Ground Truth:", y.numpy())# 运行训练
if __name__ == "__main__":train_fnn()
相关文章:

前馈神经网络 (Feedforward Neural Network, FNN)
代码功能 网络定义: 使用 torch.nn 构建了一个简单的前馈神经网络。 隐藏层使用 ReLU 激活函数,输出层使用 Sigmoid 函数(适用于二分类问题)。 数据生成: 使用经典的 XOR 问题作为数据集。 数据点为二维输入ÿ…...
【Python进阶】Python中的数据库交互:使用SQLite进行本地数据存储
1、数据持久化与访问效率 数据持久化是指程序运行过程中产生的数据能够长期保存,即使程序关闭或系统重启后仍可读取和修改。通过数据库,我们可以确保数据持久化的同时,实现数据的快速访问。例如,银行系统需要实时更新账户余额&am…...

ZooKeeper单机、集群模式搭建教程
单点配置 ZooKeeper在启动的时候,默认会读取/conf/zoo.cfg配置文件,该文件缺失会报错。因此,我们需要在将容器/conf/挂载出来,在制定的目录下,添加zoo.cfg文件。 zoo.cfg logback.xml 配置文件的信息可以从二进制包…...

函数指针示例
目录: 代码: main.c #include <stdio.h> #include <stdlib.h>int Max(int x, int y); int Min(int x, int y);int main(int argc, char**argv) {int x,y;scanf("%d",&x);scanf("%d",&y);int select;printf(&q…...
vue如何实现组件切换
一、使用条件渲染 (v-if) <template><div><button click"currentView ComponentA">Show Component A</button><button click"currentView ComponentB">Show Component B</button><component-a v-if"curren…...

计算机视觉 1-8章 (硕士)
文章目录 零、前言1.先行课程:python、深度学习、数字图像处理2.查文献3.环境安装 第一章:概论1.计算机视觉的概念2.机器学习 第二章:图像处理相关基础1.图像的概念2.图像处理3.滤波器4.卷积神经网络CNN5.图像的多层表示:图像金字…...

整数唯一分解定理
整数唯一分解定理,也称为算术基本定理,是由德国数学家高斯在其著作《算术研究》中首次提出的。本文回顾整数唯一分解定理以及对应的几个重要结论。 一、整数唯一分解定理 整数唯一分解定理,也称为算术基本定理,是数论中的一个重…...

Grass脚本2倍速多账号
前言,小编也是第一次撸空投,我是抱着试一试的态度,梦想总是要有的万一白嫖了呢 Grass 是什么? Grass 扩展程序是一款创新的工具,它可以帮助您释放未使用的网络资源的力量。 通过分享您的剩余带宽,您可以赚…...
15分钟学 Go 第 56 天:架构设计基本原则
第56天:架构设计基本原则 学习目标 理解和掌握基本的架构设计原则,以提升软件系统的可维护性、可扩展性和可重用性。 内容提纲 架构设计原则概述常见架构设计原则 单一职责原则 (SRP)开放/封闭原则 (OCP)里氏替换原则 (LSP)接口分离原则 (ISP)依赖反…...
HTML5 Video(视频)
HTML5 Video(视频) HTML5视频是现代网页设计中不可或缺的一部分,它允许开发者在网页中嵌入视频内容,为用户提供丰富多样的媒体体验。本文将深入探讨HTML5视频的各个方面,包括其基本用法、支持的格式、自定义播放器、浏览器兼容性以及最佳实践。 一、HTML5视频的基本用法 …...
开源模型应用落地-qwen模型小试-Qwen2.5-7B-Instruct-tool usage入门-串行调用多个tools(三)
一、前言 Qwen-Agent 是一个利用开源语言模型Qwen的工具使用、规划和记忆功能的框架。其模块化设计允许开发人员创建具有特定功能的定制代理,为各种应用程序提供了坚实的基础。同时,开发者可以利用 Qwen-Agent 的原子组件构建智能代理,以理解和响应用户查询。 本篇将介绍如何…...

MySQL:表设计
表的设计 从需求中获得类,类对应到数据库中的实体,实体在数据库中表现为一张一张的表,类中的属性就对应着表中的字段(也就是表中的列) 表设计的三大范式: 在数据库设计中,三大范式࿰…...

173. 二叉搜索树迭代器【 力扣(LeetCode) 】
文章目录 零、原题链接一、题目描述二、测试用例三、解题思路四、参考代码 零、原题链接 173. 二叉搜索树迭代器 一、题目描述 实现一个二叉搜索树迭代器类BSTIterator ,表示一个按中序遍历二叉搜索树(BST)的迭代器: BSTIterato…...
大三学生实习面试经历(1)
最近听了一位学长的建议,不能等一切都准备好再去开始,于是就开始了简历投递,恰好简历过了某小厂的初筛,开启了线上面试,记录了一些问题: (通过面试也确实了解到了自己在某些方面确实做的还不够…...

【论文复现】STM32设计的物联网智能鱼缸
📝个人主页🌹:Eternity._ 🌹🌹期待您的关注 🌹🌹 ❀STM32设计的物联网智能鱼缸 【1】项目功能介绍【2】设计需求总结【3】项目硬件模块组成 1.2 设计思路【1】整体设计思路【2】ESP8266工作模式…...
常见长选项和短选项对应表
长选项和短选项的等效形式 在命令行工具中,这种长选项(如--delete)和短选项(如-d)等效的情况很常见。例如--verbose和-v(用于输出详细信息),--quiet和-q(用于安静模式&a…...

Ubuntu24 上安装搜狗输入法
link 首先在终端中依次输入以下代码 sudo apt update sudo apt install fcitx 找到语言支持 在终端中依次输入 sudo cp /usr/share/applications/fcitx.desktop /etc/xdg/autostart/ sudo apt purge ibus 进入网页 搜狗输入法linux-首页 shurufa.sogou.com/linux 找到刚才下…...

【AI图像生成网站Golang】JWT认证与令牌桶算法
AI图像生成网站 目录 一、项目介绍 二、雪花算法 三、JWT认证与令牌桶算法 四、项目架构 五、图床上传与图像生成API搭建 六、项目测试与调试(等待更新) 三、JWT认证与令牌桶算法 在现代后端开发中,用户认证和接口限流是确保系统安全性和性能的两大关键要素…...
关于强化学习的一份介绍
在这篇文章中,我将介绍与强化学习有关的一些东西,具体包括相关概念、k-摇臂机、强化学习的种类等。 一、基本概念 所谓强化学习就是去学习:做什么才能使得数值化的收益信号最大化。学习者不会被告知应该采取什么动作,而是必须通…...

Python3.11.9+selenium,获取图片验证码以及输入验证码数字
Python3.11.9+selenium,获取图片验证码以及输入验证码数字 1、遇到问题:登录或修改密码需要验证码 2、解决办法: 2.1、安装ddddocr pip install ddddocr 2.2、解析验证码函数 import ddddocr def get_capcha_text():#获取验证码图片ele_pic = driver.find_element(By.XPAT…...

docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...

【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...