当前位置: 首页 > news >正文

python中使用numpy包的向量矩阵相乘

一直对np的线性运算不太清晰,正好上课讲到了,做一个笔记整个理解一下 

1.向量和矩阵

在numpy中,一重方括号表示的是向量vector,vector没有行列的概念。二重方括号表示矩阵matrix,有行列。

 

代码显示如下:

import numpy as np
a=np.array([1,2,3])
a.shape
#(3,)
b=np.array([[1,2,3],[3,4,5]])
b.shape
#(2, 3)
c=np.array([[1],[2],[3]])
c.shape
#(3, 1)

即使[1,2,3]、[[1,2,3]]看起来内容一样 使用过程中也会有完全不一样的变化。下面以向量乘法为例解释。

2.向量和向量乘法

1.* 对应对应位置相乘

普通的*:在numpy里表示普通的对应位置相乘,注意相乘的两个向量、矩阵要保证维数相同

a1=np.array([1,2,3])
a2=np.array([1,2,3])
a1*a2
#array([1, 4, 9])b1=np.array([[1,2,3]])
b2=np.array([[1,2,3]])
b1*b2
#array([[1, 4, 9]])b1=np.array([[1,2,3],[3,4,5]])
b2=np.array([[1,2,3],[3,4,5]])
b1*b2
# array([[ 1,  4,  9],
#        [ 9, 16, 25]])

2.广播机制

如果单纯出现维数对不上,python会报error

b1=np.array([[1,2]])
b2=np.array([[1,2,3]])
b1*b2
#operands could not be broadcast together with shapes (1,2) (1,3) 

但是,还有一种情况会出现乘出来一个好大的矩阵,这个情况常出现在无意之中把行、列的数字搞反的情况下。被称为广播机制,需要两个乘子都有一个维数是1,如果是对不上且不为1就会报错

Numpy中的广播机制,你确定正确理解了吗? - 腾讯云开发者社区-腾讯云

在普通的对应位置相乘,会出现 

a1=np.array([1,2,3])
a3=np.array([[1],[2],[3]])
a1*a3#broadcast together
# array([[1, 2, 3],
#        [2, 4, 6],
#        [3, 6, 9]])

倒过来也会出现

a1=np.array([1,2,3])
a3=np.array([[1],[2],[3]])
a3*a1#broadcast together
# array([[1, 2, 3],
#        [2, 4, 6],
#        [3, 6, 9]])

3.向量点乘np.dot

必须要(行向量,列向量)形式的输入

a1=np.array([1,2,3])
a3=np.array([[1],[2],[3]])
np.dot(a3,a1)
#array([14])
#ValueError: shapes (3,1) and (3,) not aligned: 1 (dim 1) != 3 (dim 0)

 都是行向量,不行

b1=np.array([[1,2,3]])
b2=np.array([[1,2,3]])
np.dot(b1,b2) 
#shapes (1,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)

都是列向量,触发广播机制

a1=np.array([[1,2,3]])
a3=np.array([[1],[2],[3]])
np.dot(a3,a1)
# array([[1, 2, 3],
#        [2, 4, 6],
#        [3, 6, 9]])

3.矩阵和向量乘法

1.对应位置相乘

如果单纯采用*的方式进行矩阵和向量乘法,那就是广播机制

矩阵+向量

A1=np.array([[1,2,3],[2,3,4]])
b1=np.array([1,2,3])
A1*b1 #broadcast together
# array([[ 1,  4,  9],
#        [ 2,  6, 12]])

 对应的向量如果是矩阵形式,结果相同

A2=np.array([[1,2,3],[2,3,4]])
b2=np.array([[1,2,3]])
A2*b2 #broadcast together
# array([[ 1,  4,  9],
#        [ 2,  6, 12]])

相似的,如果维数对不上,不会触发广播机制

A3=np.array([[1,2,3],[2,3,4]])
b3=np.array([[1],[2],[3]])
A3*b3 #operands could not be broadcast together with shapes (2,3) (3,1) 

2.矩阵乘法

如果真正想要算矩阵*向量的矩阵乘法,要用np.dot

A4=np.array([[1,2,3],[2,3,4]])
b4=np.array([1,2,3])
np.dot(A4,b4)#dot product
#array([14, 20])

列向量也有类似结果

A4=np.array([[1,2,3],[2,3,4]])
b4=np.array([[1],[2],[3]])
np.dot(A4,b4)#dot product
# array([[14],
#        [20]])

4.矩阵矩阵乘法:

1.直接相乘

同样,也是对应位置相乘

A4=np.array([[1,2,3],[2,3,4]])
B4=np.array([[1,2,3],[4,5,6]])
A4*B4
# array([[ 1,  4,  9],
#        [ 8, 15, 24]])

 有广播机制

A4=np.array([[1,2,3],[2,3,4]])
B4=np.array([[1,2,3]])
A4*B4
# array([[ 1,  4,  9],
#        [ 2,  6, 12]])

2.np.dot:

需要第一个的列数和第二个的行数相对应

A4=np.array([[1,2,3],[2,3,4]])
B4=np.array([[1,2,3],[4,5,6]])
np.dot(A4,B4.T)
# array([[14, 32],
#        [20, 47]])A5=np.array([[1,2,3],[2,3,4]])
B5=np.array([[1,2,3],[4,5,6],[7,8,9]])
np.dot(A5,B5)
# array([[30, 36, 42],
#        [42, 51, 60]])

对不上会报错

A4=np.array([[1,2,3],[2,3,4]])
B4=np.array([[1,2,3],[4,5,6]])
np.dot(A4,B4)
# shapes (2,3) and (2,3) not aligned: 3 (dim 1) != 2 (dim 0)

相关文章:

python中使用numpy包的向量矩阵相乘

一直对np的线性运算不太清晰,正好上课讲到了,做一个笔记整个理解一下 1.向量和矩阵 在numpy中,一重方括号表示的是向量vector,vector没有行列的概念。二重方括号表示矩阵matrix,有行列。 代码显示如下: …...

ElasticSearch 学习(一)

目录一、Elasticsearch 简介二、Elasticsearch 发展史三、Elasticsearch 功能四、Elasticsearch 特点五、Elasticsearch 应用场景一、Elasticsearch 简介 Elasticsearch 是一个实时的分布式搜索分析引擎,它能让你以前所未有的速度和规模,去探索你的数据…...

【新】华为OD机试 - 交换字符(Python)| 刷完获取OD招聘渠道

交换字符 题目 给定一个字符串 S 变化规则: 交换字符串中任意两个不同位置的字符 M S 都是小写字符组成 1 <= S.length <= 1000 输入 一串小写字母组成的字符串 输出 按照要求变换得到最小字符串 示例一 输入 abcdef输出 abcdef示例二 输入 bcdefa输出 acde…...

手把手教你解决传说中的NPE空指针异常

1. 前言最近有好几个初学java的小伙伴&#xff0c;甚至是学习到了JavaWeb、框架阶段的小伙伴也跑来问壹哥&#xff0c;该如何解决Java中的NullPointerException空指针异常。因为NPE是初学者特别常见的典型异常&#xff0c;所以壹哥在这里专门写一篇文章&#xff0c;来手把手地教…...

【pytorch安装】conda安装pytorch无法安装cpu版本(完整解决过程)

问题描述 在安装pytorch过程中&#xff0c;发现最后验证torch时总是返回结果为False&#xff0c;结果翻上去发现自己安装的是cpu版本的。 然后又通过conda去更换不同版本尝试&#xff0c;发现都是cpu版本的。 问题分析 通过conda安装pytorch是从源中搜索匹配指令中的文件&am…...

云计算ACP云服务器ECS实例题库

&#x1f618;作者简介&#xff1a;一名99年软件运维应届毕业生&#xff0c;正在自学云计算课程。&#x1f44a;宣言&#xff1a;人生就是B&#xff08;birth&#xff09;和D&#xff08;death&#xff09;之间的C&#xff08;choise&#xff09;&#xff0c;做好每一个选择。&…...

面试题:作用域、变量提升、块级作用域、函数作用域、暂存性死区、var和let的区别

<script>var a 10;(function () {console.log(a)a 5console.log(window.a)var a 20;console.log(a)})() </script> 上述代码&#xff1a; 1、主要是涉及到变量提升和函数作用域&#xff0c;var a20这行代码会在函数作用域中提升var a 至最顶部&#xf…...

JAVA练习49-爬楼梯

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 一、题目-爬楼梯 1.题目描述 2.思路与代码 2.1 思路 2.2 代码 总结 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; 2月13日练习内容…...

深兰科技机器人商丘制造基地正式投产,助力商丘经济高质量发展

2月9日&#xff0c;深兰科技机器人商丘制造基地投产仪式在商丘市梁园区北航创新园隆重举行。商丘市人大常委会副主任、梁园区委书记张兵&#xff0c;梁园区区长薛天江、河南省装备制造业协会会长张桦&#xff0c;河南省机器人行业协会会长王济昌&#xff0c;深兰科技集团董事长…...

ES倒排索引/查询、写入流程

ES学习笔记 Elasticsearch学习笔记_巨輪的博客-CSDN博客 Elasticsearch学习之图解Elasticsearch中的_source、_all、store和index属性_BUse的博客-CSDN博客 倒排索引 倒排索引&#xff1a;ES倒排索引底层原理及FST算法的实现过程_es fst_Elastic开源社区的博客-CSDN博客 【…...

2023软考考哪个证书好?

软考有三个级别&#xff08;初级&#xff0c;中级和高级&#xff09;&#xff0c;这三个级别分别对应5个方向&#xff0c;下面这张图片呢&#xff0c;可以一目了然&#xff0c;一些小小建议&#xff01;&#xff01;&#xff01;遵循一个原则&#xff1a;首先选专业对口的科目&…...

一般人我劝你不要自学软件测试!!!

本人5年测试经验&#xff0c;在学测试之前对电脑的认知也就只限于上个网&#xff0c;玩个办公软件。这里不能跑题&#xff0c;我为啥说&#xff1a;自学软件测试&#xff0c;一般人我还是劝你算了吧&#xff1f;因为我就是那个一般人&#xff01; 软件测试基础真的很简单&…...

docker/docker-compose 安装mysql5.7

目录使用docker安装mysql5.7docker普通安装docker生产环境安装使用docker-compose 安装注意注意一:docker-compose权限问题注意二:docker pull 找不到镜像使用docker安装mysql5.7 docker普通安装 docker pull mysql:5.7 # 启动容器 docker run -p 3306:3306 --name mysql -e …...

【C++设计模式】学习笔记(6):Bridge 桥模式

目录 简介动机(Motivation)模式定义结构(Structure)要点总结笔记结语简介 Hello! 非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ ଘ(੭ˊᵕˋ)੭ 昵称:海轰 标签:程序猿|C++选手|学生 简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金…...

Allegro如何批量快速修改复用好的模块操作指导

Allegro如何批量快速修改复用好的模块操作指导 在做PCB设计的时候,相同模块可以用reuse复用的功能,可以大大提升效率,但是模块需要修改的时候,其它模块也要跟着修改,逐个再去复用一遍比较费时间,Allegro支持批量快速修改复用好的模块 前提是相同模块必须是相同的mdd文件…...

让我百思不得其解的infer究竟是怎么推导类型的?

情景再现 有这么一个条件类型的基本语法: T extends U ? X : Y; 如果占位符类型U是一个可以被分解成几个部分的类型&#xff0c;譬如数组类型&#xff0c;元组类型&#xff0c;函数类型&#xff0c;字符串字面量类型等。这时候就可以通过infer来获取U类型中某个部分的类型。 …...

E8-怎么实现根据表单内容自动生成标题

背景 可能有些小伙伴看到这个话题&#xff0c;觉得非常简单&#xff0c;在发起人步骤设置标题可编辑&#xff0c;在有关的控件中设置事件去更新标题就可以了呗。但如果想要标题字段里包含编号呢&#xff0c;而编号是在具体路径的高级设置里设置的&#xff0c;在某个出口生成的…...

《c语言深度解剖》--一套非常经典的笔试题

学习完c语言&#xff0c;需要对所学知识进行一个检测&#xff0c;下面有一套笔试题&#xff0c; 你有四十分钟进行检测&#xff0c;每道题五分&#xff0c;严格要求自己打分。 根据作者原话&#xff1a;在没有何提示的情况下,如果能得满分,那你可以扔掉本书了,因为你的水平已经…...

【数据结构与算法】单调队列 | 单调栈

&#x1f320;作者&#xff1a;阿亮joy. &#x1f386;专栏&#xff1a;《数据结构与算法要啸着学》 &#x1f387;座右铭&#xff1a;每个优秀的人都有一段沉默的时光&#xff0c;那段时光是付出了很多努力却得不到结果的日子&#xff0c;我们把它叫做扎根 目录&#x1f449;…...

openh264解码h264视频帧主流程

一 解析一帧的入口int32_t WelsDecodeSlice (PWelsDecoderContext pCtx, bool bFirstSliceInLayer, PNalUnit pNalCur) {// 解码slicePDqLayer pCurDqLayer pCtx->pCurDqLayer;PFmo pFmo pCtx->pFmo;int32_t iRet;int32_t iNextMbXyIndex, iSliceIdc;PSlice pSlice &a…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)

目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 ​编辑​编辑 UDP的特征 socke函数 bind函数 recvfrom函数&#xff08;接收函数&#xff09; sendto函数&#xff08;发送函数&#xff09; 五、网络编程之 UDP 用…...

Android写一个捕获全局异常的工具类

项目开发和实际运行过程中难免会遇到异常发生&#xff0c;系统提供了一个可以捕获全局异常的工具Uncaughtexceptionhandler&#xff0c;它是Thread的子类&#xff08;就是package java.lang;里线程的Thread&#xff09;。本文将利用它将设备信息、报错信息以及错误的发生时间都…...