基于YOLOv8深度学习的公共卫生防护口罩佩戴检测系统(PyQt5界面+数据集+训练代码)
在全球公共卫生事件频发的背景下,防护口罩佩戴检测成为保障公众健康和控制病毒传播的重要手段之一。特别是在人员密集的公共场所,例如医院、学校、公共交通工具等地,口罩的正确佩戴对降低病毒传播风险、保护易感人群、遏制疫情扩散有着至关重要的作用。基于此,如何实现高效、准确的口罩佩戴检测,不仅能够帮助公共卫生管理者实时掌握防疫措施的落实情况,还为未来公共卫生安全体系的智能化奠定了基础。
为应对这一需求,本文设计并实现了一种基于YOLOv8深度学习的防护口罩佩戴检测系统。该系统在传统目标检测算法的基础上,采用了最新的YOLOv8模型,通过大量带标签的图像数据集进行训练,具有卓越的目标识别能力和极高的运算效率。该系统能够精准识别三种口罩佩戴状态:佩戴口罩、未佩戴口罩以及口罩佩戴不正确的情况。在口罩佩戴不正确的状态下,系统可以进一步识别出鼻子外露、口鼻遮挡不完全、佩戴方式错误等细微特征,从而提高检测的全面性和准确性。
此外,为了提升系统的友好性和实用性,我们开发了基于PyQt5的用户交互界面,使系统不仅能轻松嵌入到现有的监控设备中,还能够让用户直观地查看实时检测结果,获得即时反馈。该界面不仅操作简便,且具备灵活配置功能,适用于不同使用场景和需求的调整。通过精心设计的交互界面,用户能够在无需复杂设置的情况下快速启动检测,提高了系统的易用性和推广潜力。
在实验阶段,我们对系统进行了多场景、多光照条件下的综合测试,实验结果表明,本文提出的防护口罩佩戴检测系统在识别佩戴口罩、未佩戴口罩以及佩戴不正确的状态方面均表现出高效的检测精度和稳定性。在实际应用中,该系统可以支持24小时不间断监控,并在检测到异常佩戴状态时发出警报,便于管理人员及时提醒,进一步保障公众的健康安全。
本研究提出的基于YOLOv8深度学习的防护口罩佩戴检测系统,能够为公共场所的口罩佩戴监控提供有效支持,有效降低病毒传播风险,助力公共卫生管理。本文的研究成果不仅为防控疫情传播提供了积极意义,同时也为相关领域的智能公共健康监控系统开发提供了重要的技术参考,具有广泛的应用前景和推广价值。
算法流程
项目数据
通过搜集关于数据集为各种各样的口罩佩戴相关图像,并使用Labelimg标注工具对每张图片进行标注,分4检测类别,分别是’佩戴口罩’,’未佩戴口罩’,’口罩佩戴不正确’。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
结束后,在cmd中输入labelimg
初识labelimg
打开后,我们自己设置一下
在View中勾选Auto Save mode
接下来我们打开需要标注的图片文件夹
并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。
Labelimg的快捷键
(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片。
生成文件如下:
“classes.txt”定义了你的 YOLO 标签所引用的类名列表。
(4)YOLO模式创建标签的样式
存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。
注意:这里的中心点坐标、宽和高都是相对数据!!!
存放标签类别的文件的文件名为classes.txt (固定不变),用于存放创建的标签类别。
完成后可进行后续的yolo训练方面的操作。
模型训练
模型的训练、评估与推理
1.YOLOv8的基本原理
YOLOv8是一个SOTA模型,它建立在Yolo系列历史版本的基础上,并引入了新的功能和改进点,以进一步提升性能和灵活性,使其成为实现目标检测、图像分割、姿态估计等任务的最佳选择。其具体创新点包括一个新的骨干网络、一个新的Ancher-Free检测头和一个新的损失函数,可在CPU到GPU的多种硬件平台上运行。
YOLOv8是Yolo系列模型的最新王者,各种指标全面超越现有对象检测与实例分割模型,借鉴了Yolov5、Yolov6、YoloX等模型的设计优点,在全面提升改进Yolov5模型结构的基础上实现,同时保持了Yolov5工程化简洁易用的优势。
Yolov8模型网络结构图如下图所示:
2.数据集准备与训练
本研究使用了包含口罩检测图像的数据集,并通过Labelimg标注工具对每张图像中的目标边框(Bounding Box)及其类别进行标注。然后主要基于YOLOv8n这种模型进行模型的训练,训练完成后对模型在验证集上的表现进行全面的性能评估及对比分析。模型训练和评估流程基本一致,包括:数据集准备、模型训练、模型评估。本次标注的目标类别为口罩检测,数据集中共计包含852张图像,其中训练集占681张,验证集占171张。部分图像如下图所示:
部分标注如下图所示:
图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入datasets目录下。
接着需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。
data.yaml的具体内容如下:
train: E:\FaceMaskDetection_v8\datasets\train\images # train images (relative to ‘path’) 128 images 训练集的路径
val: E:\FaceMaskDetection_v8\datasets\val\images # val images (relative to ‘path’) 128 images 验证集的路径
test: # val images (optional)
# number of classes
nc: 3
# Classes
names: [‘Mask’,’NoMask’,’MaskIncorrect’]
这个文件定义了用于模型训练和验证的数据集路径,以及模型将要检测的目标类别。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小(根据内存大小调整,最小为1)。
CPU/GPU训练代码如下:
加载名为 yolov8n.pt 的预训练YOLOv8模型,yolov8n.pt是预先训练好的模型文件。
使用YOLO模型进行训练,主要参数说明如下:
(1)data=data_yaml_path: 指定了用于训练的数据集配置文件。
(2)epochs=150: 设定训练的轮数为150轮。
(3)batch=4: 指定了每个批次的样本数量为4。
(4)optimizer=’SGD’):SGD 优化器。
(7)name=’train_v8′: 指定了此次训练的命名标签,用于区分不同的训练实验。
3.训练结果评估
在深度学习的过程中,我们通常通过观察损失函数下降的曲线来了解模型的训练情况。对于YOLOv8模型的训练,主要涉及三类损失:定位损失(box_loss)、分类损失(cls_loss)以及动态特征损失(dfl_loss)。训练完成后,相关的训练过程和结果文件会保存在 runs/ 目录下,具体如下:
各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
训练结果如下:
这张图展示了YOLOv8模型在训练和验证过程中的多个重要指标的变化趋势,具体如下:
train/box_loss:
(1)这是训练过程中边界框损失的变化。边界框损失用于衡量模型预测的目标框与实际目标框的差异。
(2)下降趋势表示模型在定位边界框上越来越准确。
train/cls_loss:
(1)这是训练集上的分类损失。分类损失衡量模型对目标类别的预测准确性。
(2)损失下降表明模型在对象分类上表现越来越好。
train/dfl_loss:
(1)这是分布聚焦损失(distribution focal loss),用于帮助模型对目标框的精确定位。
(2)损失值的下降表示模型的定位精度在提升。
metrics/precision(B):
(1)这是训练集上的精度(precision)曲线。精度表示模型在检测到的目标中有多少是真正的目标。
(2)精度越接近 1,说明模型对检测到的对象越准确,误报越少。
metrics/recall(B):
(1)这是训练集上的召回率(recall)曲线。召回率表示模型检测出的真实目标的比例。
(2)召回率越接近 1,表示模型能够捕捉到大部分目标对象。
val/box_loss:
(1)这是验证集上的边界框损失曲线。
(2)下降的验证边框损失表明模型在定位上有良好的泛化能力。
val/cls_loss:
(1)这是验证集上的分类损失曲线。
(2)较低的分类损失值表示模型在未见数据上的分类表现良好。
val/dfl_loss:
(1)这是验证集上的分布聚焦损失曲线。
(2)反映模型在验证数据中对象定位的准确性。
metrics/mAP50(B):
(1)这是验证集上的mAP50曲线,表示在交并比阈值为0.5时模型的平均精度(mean Average Precision)。
(2)值越高表示性能越好。
metrics/mAP50-95(B):
(1)这是验证集上的mAP50-95曲线,表示在不同交并比阈值(从0.5到0.95)下模型的平均精度。
(2)值越高表示模型的检测性能越稳健。
这些图表共同显示了模型的损失值在逐渐下降,而精度、召回率和 mAP 指标在提升,表明模型训练效果良好,并且在未见数据上有较好的泛化能力。
这张图展示的是 Precision-Recall 曲线,用于评估模型在不同类别下的检测性能。以下是详细解释:
(1)Mask (蓝色曲线):对应于”Mask”(佩戴口罩)类别,曲线下的区域(即 AUC)为 0.919,表示在检测口罩佩戴情况时,模型表现非常好,具有较高的精确率和召回率。
(2)NoMask (橙色曲线):对应于”NoMask”(未佩戴口罩)类别,AUC 为 0.798。相比于”Mask”类别,模型在识别未佩戴口罩时表现略差,但依然具有较高的检测能力。
(3)MaskIncorrect (绿色曲线):对应于”MaskIncorrect”(佩戴口罩不正确)类别,AUC 为 0.627。这条曲线显示出模型在检测佩戴口罩不正确的情况时表现较弱,精确率和召回率相对较低。
(4)All Classes (粗蓝色曲线):这是所有类别的总体精确率-召回率曲线,AUC(mAP@0.5)为 0.781,表示在所有类别上的平均性能。这条曲线是模型在不同类别下整体表现的综合反映。
模型在”Mask”类别上的检测效果最佳,精确率和召回率较高。”NoMask”类别的表现次之,而”MaskIncorrect”类别的检测效果较弱。总体的平均精度 mAP@0.5 为 0.781,表明模型在多类别的情况下具有较好的性能,但在某些类别上仍有提升空间。
4.检测结果识别
模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/train/weights目录下。我们可以使用该文件进行后续的推理检测。
imgTest.py 图片检测代码如下:
加载所需库:
(1)from ultralytics import YOLO:导入YOLO模型类,用于进行目标检测。
(2)import cv2:导入OpenCV库,用于图像处理和显示。
加载模型路径和图片路径:
(1)path = ‘models/best.pt’:指定预训练模型的路径,这个模型将用于目标检测任务。
(2)img_path = “TestFiles/imagetest.jpg”:指定需要进行检测的图片文件的路径。
加载预训练模型:
(1)model = YOLO(path, task=’detect’):使用指定路径加载YOLO模型,并指定检测任务为目标检测 (detect)。
(2)通过 conf 参数设置目标检测的置信度阈值,通过 iou 参数设置非极大值抑制(NMS)的交并比(IoU)阈值。
检测图片:
(1)results = model(img_path):对指定的图片执行目标检测,results 包含检测结果。
显示检测结果:
(1)res = results[0].plot():将检测到的结果绘制在图片上。
(2)cv2.imshow(“YOLOv8 Detection”, res):使用OpenCV显示检测后的图片,窗口标题为“YOLOv8 Detection”。
(3)cv2.waitKey(0):等待用户按键关闭显示窗口
此代码的功能是加载一个预训练的YOLOv8模型,对指定的图片进行目标检测,并将检测结果显示出来。
执行imgTest.py代码后,会将执行的结果直接标注在图片上,结果如下:
这段输出是基于YOLOv8模型对图片“imagetest.jpg”进行检测的结果,具体内容如下:
图像信息:
(1)处理的图像路径为:TestFiles/imagetest.png。
(2)图像尺寸为 640×512 像素。
检测结果:
(1)检测到一个对象,标记为 Mask,即佩戴口罩。
处理速度:
(1)预处理时间为 9.0 毫秒。
(2)推理(inference)时间为 38.6 毫秒。
(3)后处理时间为 78.3 毫秒。
基于 YOLOv8 深度学习模型,对输入图像进行预处理、推理和后处理,成功检测到“佩戴口罩”的类别。并通过快速检测实现了口罩检测的识别。该检测过程高效、准确,为实时口罩佩戴监控提供了可靠的技术支持。
运行效果
– 运行 MainProgram.py
1.主要功能:
(1)可用于实时检测目标图片中的口罩佩戴检测;
(2)支持图片、视频及摄像头进行检测,同时支持图片的批量检测;
(3)界面可实时显示目标位置、目标总数、置信度、用时等信息;
(4)支持图片或者视频的检测结果保存。
2.检测结果说明:
这张图表显示了基于YOLOv8模型的目标检测系统的检测结果界面。以下是各个字段的含义解释:
用时(Time taken):
(1)这表示模型完成检测所用的时间为0.036秒。
(2)这显示了模型的实时性,检测速度非常快。
目标数目(Number of objects detected):
(1)检测到的目标数目为18,表示这是当前检测到的第1个目标。
目标选择(下拉菜单):全部:
(1)这里有一个下拉菜单,用户可以选择要查看的目标类型。
(2)在当前情况下,选择的是“全部”,意味着显示所有检测到的目标信息。
结果(Result):
(1)当前选中的结果为 “口罩佩戴不正确”,表示系统正在高亮显示检测到的“MaskIncorrect”。
置信度(Confidence):
(1)这表示模型对检测到的目标属于“口罩佩戴不正确”类别的置信度为98.11%。
(2)置信度反映了模型的信心,置信度越高,模型对这个检测结果越有信心。
目标位置(Object location):
(1)xmin: 20, ymin: 112:目标的左上角的坐标(xmin, ymin),表示目标区域在图像中的位置。
(2)xmax: 75, ymax: 170:目标的右下角的坐标(xmax, ymax),表示目标区域的边界。
这些坐标表示在图像中的目标区域范围,框定了检测到的“口罩佩戴不正确”的位置。
这张图展示了口罩佩戴的一次检测结果,包括检测时间、检测到的种类、各行为的置信度、目标的位置信息等。用户可以通过界面查看并分析检测结果,提升口罩佩戴检测的效率。
3.图片检测说明
(1)口罩佩戴正确
(2)未佩戴口罩
(3)口罩佩戴不正确
点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹。
操作演示如下:
(1)点击目标下拉框后,可以选定指定目标的结果信息进行显示。
(2)点击保存按钮,会对检测结果进行保存,存储路径为:save_data目录下。
检测结果:系统识别出图片中的口罩佩戴,并显示检测结果,包括总目标数、用时、目标类型、置信度、以及目标的位置坐标信息。
4.视频检测说明
点击视频按钮,打开选择需要检测的视频,就会自动显示检测结果,再次点击可以关闭视频。
点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
检测结果:系统对视频进行实时分析,检测到口罩佩戴并显示检测结果。表格显示了视频中多个检测结果的置信度和位置信息。
这个界面展示了系统对视频帧中的多目标检测能力,能够准确识别口罩佩戴,并提供详细的检测结果和置信度评分。
5.摄像头检测说明
点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击,可关闭摄像头。
检测结果:系统连接摄像头进行实时分析,检测到口罩佩戴并显示检测结果。实时显示摄像头画面,并将检测到的行为位置标注在图像上,表格下方记录了每一帧中检测结果的详细信息。
6.保存图片与视频检测说明
点击保存按钮后,会将当前选择的图片(含批量图片)或者视频的检测结果进行保存。
检测的图片与视频结果会存储在save_data目录下。
保存的检测结果文件如下:
图片文件保存的csv文件内容如下,包括图片路径、目标在图片中的编号、目标类别、置信度、目标坐标位置。
注:其中坐标位置是代表检测框的左上角与右下角两个点的x、y坐标。
(1)图片保存
(2)视频保存
– 运行 train.py
1.训练参数设置
(1)data=data_yaml_path: 使用data.yaml中定义的数据集。
(2)epochs=150: 训练的轮数设置为150轮。
(3)batch=4: 每个批次的图像数量为4(批次大小)。
(4)name=’train_v8′: 训练结果将保存到以train_v8为名字的目录中。
(5)optimizer=’SGD’: 使用随机梯度下降法(SGD)作为优化器。
虽然在大多数深度学习任务中,GPU通常会提供更快的训练速度。
但在某些情况下,可能由于硬件限制或其他原因,用户需要在CPU上进行训练。
温馨提示:在CPU上训练深度学习模型通常会比在GPU上慢得多,尤其是像YOLOv8这样的计算密集型模型。除非特定需要,通常建议在GPU上进行训练以节省时间。
2.训练日志结果
这张图展示了使用YOLOv8进行模型训练的详细过程和结果。
训练总时长:
(1)模型在训练了150轮后,总共耗时0.532小时。
mAP50和mAP50-95:
(1)mAP50 表示在IoU阈值为0.5下的平均精度,对所有类别来说整体mAP50为0.781。
(2)mAP50-95 表示在IoU从0.5到0.95的不同阈值下的平均精度,对所有类别来说整体mAP50-95为0.511。各类别的mAP50-95分别为:Mask 0.636,NoMask 0.491,MaskIncorrect 0.407。mAP50-95通常较低,因为它是对多种IoU阈值的平均。
速度:
(1)0.2ms 预处理时间
(2)1.2ms 推理时间
(3)0.8ms 后处理时间
结果保存:
(1)Results saved to runs\detect\train_v8:验证结果保存在 runs\detect\train_v8 目录下。
完成信息:
(1)Process finished with exit code 0:表示整个验证过程顺利完成,没有报错。
该模型在“正确佩戴口罩”和“未佩戴口罩”的检测上有较高的精度和召回率,而在“口罩佩戴不正确”类别上表现相对较弱。整体检测效果较为优秀,适合公共场所的实时监控应用。
相关文章:

基于YOLOv8深度学习的公共卫生防护口罩佩戴检测系统(PyQt5界面+数据集+训练代码)
在全球公共卫生事件频发的背景下,防护口罩佩戴检测成为保障公众健康和控制病毒传播的重要手段之一。特别是在人员密集的公共场所,例如医院、学校、公共交通工具等地,口罩的正确佩戴对降低病毒传播风险、保护易感人群、遏制疫情扩散有着至关重…...

Nature Communications 基于触觉手套的深度学习驱动视触觉动态重建方案
在人形机器人操作领域,有一个极具价值的问题:鉴于操作数据在人形操作技能学习中的重要性,如何有效地从现实世界中获取操作数据的完整状态?如果可以,那考虑到人类庞大规模的人口和进行复杂操作的简单直观性与可扩展性&a…...

构建SSH僵尸网络
import argparse import paramiko# 定义一个名为Client的类,用于表示SSH客户端相关操作 class Client:# 类的初始化方法,接收主机地址、用户名和密码作为参数def __init__(self, host, user, password):self.host hostself.user userself.password pa…...
WPF中MVVM工具包 CommunityToolkit.Mvvm
CommunityToolkit.Mvvm,也称为MVVM工具包,是Microsoft Community Toolkit的一部分。它是一个轻量级但功能强大的MVVM(Model-View-ViewModel)库,旨在帮助开发者更容易地实现MVVM设计模式。 特点 独立于平台和运行时&a…...

学习空闲任务函数
一、user_StopEnterTask 停止 进入任务 /* Private includes -----------------------------------------------------------*/ //includes #include "user_TasksInit.h" #include "user_MPUCheckTask.h"#include "ui.h" #include "ui_Hom…...

Hyper-v中ubuntu与windows文件共享
Hyper-v中ubuntu与windows文件共享 前言相关链接第一步--第一个链接第二步--第二个链接测试与验证 前言 关于Hyper-V的共享我搞了好久,网上的很多教程太过冗余,我直接采用最简单的办法吧 相关链接 Hyper-V中Ubuntu 同windows系统共享文件夹-百度经验 …...

【软件工程】一篇入门UML建模图(类图)
🌈 个人主页:十二月的猫-CSDN博客 🔥 系列专栏: 🏀软件开发必练内功_十二月的猫的博客-CSDN博客 💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 目录 1. 前…...

Windows 安装Docker For Desktop概要
Windows 安装docker 下载部分的工作需要使用科学技术。如果没有可以联系博主发送已下载好的文件。 本文档不涉及技术的讲解,仅有安装的步骤。 准备工作 包含下载与环境准备,下载的文件仅下载,在后续步骤进行安装。 微软关于wsl的文档&…...
解决循环依赖报错问题
Caused by: org.springframework.beans.factory.BeanCurrentlyInCreationException: Error creating bean with name ‘asyncTaskServiceImpl’: Bean with name ‘asyncTaskServiceImpl’ has been injected into other beans [resignServiceImpl] in its raw version as part…...

代码随想录第46期 单调栈
这道题主要是单调栈的简单应用 class Solution { public:vector<int> dailyTemperatures(vector<int>& T) {vector<int> result(T.size(),0);stack<int> st;st.push(0);for(int i1;i<T.size();i){if(T[i]<T[st.top()]){st.push(i);}else{wh…...

中仕公考怎么样?事业编面试不去有影响吗?
事业编考试笔试已经通过,但是面试不去参加会有影响吗? 1. 自动放弃面试资格:未能按时出席事业单位的面试将被视为主动放弃该岗位的竞争机会。 2. 个人信誉问题:面试作为招聘流程的关键步骤,无故缺席可能被解释为诚信…...

OMV7 树莓派 tf卡安装
升级7之后,问题多多,不是docker不行了,就是代理不好使 今天又重装了一遍,用官方的链接,重新再折腾一遍…… 使用raspberry pi imager安装最新版lite OS。 注意是无桌面 Lite版 配置好树莓派初始化设置࿰…...
Go语言24小时极速学习教程(五)Go语言中的SpringMVC框架——Gin
作为一个真正能用的企业级应用,怎么能缺少RESTful接口呢?所以我们需要尝试在Go语言环境中写出我们的对外接口,这样前端就可以借由Gin框架访问我们数据库中的数据了。 一、Gin框架的使用 1. 安装 Gin 首先,你需要在你的 Go 项目…...
【汇编】c++游戏开发
由一起学编程创作的‘C/C项目实战:2D射击游戏开发(简易版), 440 行源码分享来啦~’: C/C项目实战:2D射击游戏开发(简易版), 440 行源码分享来啦~_射击c-CSDN博客文章浏览…...

Android Studio | 修改镜像地址为阿里云镜像地址,启动App
在项目文件的目录下的 settings.gradle.kts 中修改配置,配置中包含插件和依赖项 pluginManagement {repositories {maven { urluri ("https://www.jitpack.io")}maven { urluri ("https://maven.aliyun.com/repository/releases")}maven { urlu…...

Rocky linux8 安装php8.0
Rocky linux8 安装php8.0 1.安装remi源2.列出php版本3.变更php版本,Rocky8有提供php8版本,所以切换Rocky8提供的版本,而不是remi提供的版本,不过remi有提供php8.1和php8.2版本。4.切换成remi提供的8.0版本5.安装phpendl 1.安装rem…...

Ubuntu 18 EDK2 环境编译
视频:在全新的Ubuntu上从零搭建UEFI的EDK2开发环境 开始:git clone https://github.com/tianocore/edk2.git 开始编译BaseTools前先更新一下子模块:git submodule update --init ,然后:make -C BaseTools/ 问题1&a…...

C语言项⽬实践-贪吃蛇
目录 1.项目要点 2.窗口设置 2.1mode命令 2.2title命令 2.3system函数 2.Win32 API 2.1 COORD 2.2 GetStdHandle 2.3 CONSOLE_CURSOR_INFO 2.4 GetConsoleCursorInfo 2.5 SetConsoleCursorInfo 2.5 SetConsoleCursorPosition 2.7 GetAsyncKeyState 3.贪吃蛇游戏设…...

智慧安防丨以科技之力,筑起防范人贩的铜墙铁壁
近日,贵州省贵阳市中级人民法院对余华英拐卖儿童案做出了一审宣判,判处其死刑,剥夺政治权利终身,并处没收个人全部财产。这一判决不仅彰显了法律的威严,也再次唤起了社会对拐卖儿童犯罪的深切关注。 余华英自1993年至2…...

Spring:IoC/DI加载properties文件
Spring框架可以通过Spring的配置文件完成两个数据源druid和C3P0的配置(Spring:IOC/DI配置管理第三方bean),但是其中包含了一些问题,我们来分析下: 这两个数据源中都使用到了一些固定的常量如数据库连接四要素…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...

【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...

沙箱虚拟化技术虚拟机容器之间的关系详解
问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西,但是如果把三者放在一起,它们之间到底什么关系?又有什么联系呢?我不是很明白!!! 就比如说: 沙箱&#…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL
ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...