机器学习(1)
一、机器学习
机器学习(Machine Learning, ML)是人工智能(Artificial Intelligence, AI)的一个分支,它致力于开发能够从数据中学习并改进性能的算法和模型。机器学习的核心思想是通过数据和经验自动优化算法,而不是通过显式的编程规则。
1.1、机器学习的基本概念
-
数据:机器学习的基础是数据。数据可以是结构化的(如数据库中的表格数据)或非结构化的(如文本、图像、音频等)。
-
模型:模型是机器学习算法的核心,它是一个数学表示,用于从输入数据中学习并做出预测或决策。
-
学习:学习是指模型通过数据进行训练,调整其内部参数以最小化预测误差的过程。
-
特征:特征是数据中的变量或属性,模型使用这些特征来进行预测或分类。
-
标签:标签是数据中的目标变量,模型通过学习特征和标签之间的关系来进行预测。
1.2、机器学习的分类
- 监督学习
- 半监督学习
- 无监督学习
- 强化学习
二、机器学习步骤
- 收集数据:数据是机器学习的基础。
- 准备数据:高质量的数据才能提高模型精准度。
- 训练模型:对处理后的数据进行训练,并留存部分数据用作验证。
- 评估模型:对模型进行验证,确定模型的精准度。
- 提高性能:对代码和模型进行优化。
2.1、前期准备——scikit-learn的安装
执行下面的代码
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-learn
或
pip install scikit-learn
2.2、数据集
2.2.1、数据集的分类
- 玩具数据集:轻量的数据集,直接在sklearn库本地,无需下载

示例:
from sklearn.datasets import load_iris # type: ignoreiris = load_iris() # type: ignore
print(iris.data)
- 现实数据集:数据量大,需要从网络上下载

from sklearn.datasets import fetch_20newsgroups #这是一个20分类的数据news = fetch_20newsgroups(data_home=None,subset='all')
print(len(news.data))
2.2.2、数据集的操作
# data 特征
# feature_names 特征描述
# target 目标
# target_names 目标描述
# DESCR 数据集的描述
# filename 下后到本地保存后的文件名
2.2.3、读取本地文件
本地csv文件
import pandas as pd # type: ignoredata = pd.read_csv('../dataset/ss.csv')
print(data)
本地ecxel文件
在读取excel文件时,需要使用openpyxl来读取,
我是用pip命令来安装的该引擎
pip install openpyxl
import pandas as pd# type: ignore# 指定使用 openpyxl 引擎来读取 Excel 文件
data = pd.read_excel('../dataset/ss.xlsx', engine='openpyxl')
# print(data)# 选择特定的列
x = data.iloc[:, [0, 1, 2]]
y = data.iloc[:, [-2]]# print(x)
print(y)
2.2.4、数据集的划分
数据集划分函数
from sklearn.model_selection import train_test_split # type: ignore
参数注释
参数
(1) *array
这里用于接收1到多个"列表、numpy数组、稀疏矩阵或padas中的DataFrame"。
(2) **options, 重要的关键字参数有:
test_size 值为0.0到1.0的小数,表示划分后测试集占的比例
random_state 值为任意整数,表示随机种子,使用相同的随机种子对相同的数据集多次划分结果是相同的。否则多半不同
strxxxx 分层划分,填y
2 返回值说明
返回值为列表list, 列表长度与形参array接收到的参数数量相关联, 形参array接收到的是什么类型,list中对应被划分出来的两部分就是什么类型
list数据数据划分
import numpy as np# type: ignore
from sklearn.model_selection import train_test_split# type: ignoreX=[[11,2,3,31,111],[12,2,3,32,112],[1,23,3,33,113],[14,2,3,34,114],[15,2,3,35,115],[16,2,3,36,116],[1,23,3,36,117],[1,23,3,316,118],[1,23,3,326,119],[1,23,3,336,120]
]
y=[1,1,1,1,1,2,2,2,2,2]
# 打印生成的数据
print("随机生成的x数据:")
print(X)
print("标签y:")
print(y)# 划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(X, y, train_size=0.8, stratify=y)# 打印划分结果
print("训练集 x_train:\n")
print(x_train)
print("测试集 x_test:\n")
print(x_test)
print("训练集标签 y_train:\n")
print(y_train)
print("测试集标签 y_test:\n")
print(y_test)
ndarray的数据集划分
from sklearn.model_selection import train_test_split# type: ignore
import numpy as np# type: ignorex = np.arange(100).reshape(50,2)
# print(x)
x_train,x_test = train_test_split(x,test_size=0.8,random_state=42)
print(x_train)
print("----------------------------------")
print(x_test)
dataFrame的数据集划分
import numpy as np# type: ignore
import pandas as pd# type: ignore
from sklearn.model_selection import train_test_split# type: ignore# 数据集的划分
data = np.arange(1,100).reshape(33, 3)
data = pd.DataFrame(data,columns=['a','b','c'])
# print(data)
x_train,x_test = train_test_split(data,test_size=0.3)
print("\n",x_train)
print("--------------------------")
print("\n",x_test)
玩具数据集划分
# 鸢尾花数据集划分
from sklearn import datasets# type: ignore
from sklearn.model_selection import train_test_split# type: ignoreiris = datasets.load_iris()
x = iris.data
y = iris.target
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=4)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
print(iris.feature_names)
print(iris.target_names)
现实数据集划分
import numpy as np# type: ignorefrom sklearn.datasets import fetch_20newsgroups# type: ignore
from sklearn.model_selection import train_test_split# type: ignorenew_date = fetch_20newsgroups(data_home='../dataset/',subset='train')
# print(new_date.data[0])x_train,x_test,y_train,y_test = train_test_split(new_date.data,new_date.target,test_size=0.2,random_state=666)
print(np.array(x_train).shape)
print(np.array(x_test).shape)
print(np.array(y_train).shape)
print(np.array(y_test).shape)print(new_date.target_names)
2.3、特征工程
特征工程api
# DictVectorizer 字典特征提取
# CountVectorizer 文本特征提取
# TfidfVectorizer TF-IDF文本特征词的重要程度特征提取
# MinMaxScaler 归一化
# StandardScaler 标准化
# VarianceThreshold 底方差过滤降维
# PCA 主成分分析降维
#转换器对象调用fit_transform()进行转换, 其中fit用于计算数据,transform进行最终转换fit_transform()可以使用fit()和transform()代替fit_transform()、fit()和transform()之间的区别1. fit()
作用: fit() 方法用于计算数据集的统计信息(如均值、方差等),以便后续的转换操作。
返回值: 无返回值,直接在对象内部存储计算结果。
适用场景: 当你需要对训练数据集进行统计信息的计算时使用。2. transform()
作用: transform() 方法使用 fit() 计算的统计信息对数据集进行转换。
返回值: 返回转换后的数据集。
适用场景: 当你需要对训练数据集或测试数据集进行相同的转换时使用。3. fit_transform()
作用: fit_transform() 方法结合了 fit() 和 transform() 的功能,先计算统计信息,然后对数据集进行转换。
返回值: 返回转换后的数据集。
适用场景: 当你需要对训练数据集进行一次性计算和转换时使用。
字典的特征提取和数据集划分
from sklearn.feature_extraction import DictVectorizer# type: ignore
from sklearn.model_selection import train_test_split# type: ignoredata_dict = [{'city': '北京', 'count':2300,'tempertrye': 41},{'city': '上海', 'count':2300,'tempertrye': 39}, {'city': '深圳', 'count':2750,'tempertrye': 30},{'city': '广州', 'count':2500,'tempertrye': 40},{'city': '杭州', 'count':2800,'tempertrye': 33},{'city': '西安', 'count':2700,'tempertrye': 28},{'city': '西安', 'count':2700,'tempertrye': 28}
]# sparse=False:表示返回完整的矩阵,True:表示返回稀疏矩阵
model = DictVectorizer(sparse=False)
data_new = model.fit_transform(data_dict)
# print(data_new)
x_train,y_train = train_test_split(data_new,test_size=0.2,random_state=666)
print(x_train)
print('------------------------------------------------------------------------------')
print(y_train)
文本特征提取
from sklearn.feature_extraction.text import CountVectorizercorpus = ['I love machine learning.Its awesome.', 'Its a amazon book', 'Amazon is a great company']# 创建一个词频提取对象
vectorizer = CountVectorizer(stop_words=['amzzon'])
# 提取特征词频
X = vectorizer.fit_transform(corpus)print(X)print(X.toarray())
# 打印特征词频
print(vectorizer.get_feature_names_out())
CountVectorizer 中文本特征提取
中文提取需要用到库jieba
使用下面的命令进行安装
pip install jieba
import jieba
from sklearn.feature_extraction.text import CountVectorizer
# arr = list(jieba.cut("我爱北京天安门"))
# print (arr)
# str01 = ' '.join(arr)
# print (str01)
def my_cut(text):#传入没有断词的文本,用jieba分词工具转化为数据容器,然后把数据容器中的元素用空格连接起来return ' '.join(list(jieba.cut(text)))corpus = ['我爱北京天安门','我爱成都天府广场']
# 创建一个词频提取对象
vectorizer = CountVectorizer(stop_words=[])
# 提取词频
data = [my_cut(el) for el in corpus]
x = vectorizer.fit_transform(data)
# print(x)
# print(x.toarray())
print(vectorizer.get_feature_names_out())data02 = pd.DataFrame(x.toarray(),columns=vectorizer.get_feature_names_out())
print(data02)
TfidfVectorizer TF-IDF文本特征词的重要程度特征提取
import jieba
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizerdef cut_words(text):return " ".join(list(jieba.cut(text)))data = ["教育学会会长期间,坚定支持民办教育事业!", "扶持民办,学校发展事业","事业做出重大贡献!"]
data_new = [cut_words(v) for v in data]transfer = TfidfVectorizer(stop_words=['期间', '做出',"重大贡献"])
data_final = transfer.fit_transform(data_new)pd.DataFrame(data_final.toarray(), columns=transfer.get_feature_names_out())
无量纲化
MinMaxScaler 归一化
data = [[1, 2, 3, 4],[1, 2, 3, 4],[1, 2, 3, 4],[1, 2, 3, 4]
]
tran = MinMaxScaler(feature_range(1,2))
data = tran.fit_transfrom(data)
print(data)
StandardScaler 标准化
import numpy as np
from sklearn.preprocessing import StandardScaler# 创建一个示例数据集
X = np.array([[1, 2], [3, 4], [5, 6]])# 初始化 StandardScaler
scaler = StandardScaler()# 对训练数据进行 fit_transform
X_train_scaled = scaler.fit_transform(X)# 打印标准化后的训练数据
print("标准化后的训练数据:")
print(X_train_scaled)# 创建一个新的测试数据集
X_test = np.array([[7, 8], [9, 10]])# 对测试数据进行 transform
X_test_scaled = scaler.transform(X_test)# 打印标准化后的测试数据
print("标准化后的测试数据:")
print(X_test_scaled)
2.4、特征降维
VarianceThreshold 低方差过滤特征选择
# 1、获取数据,data是一个DataFrame,可以是读取的csv文件
data=pd.DataFrame([[10,11],[11,13],[11,11],[11,15],[11,91],[11,13],[11,12],[11,16]])
print("data:\n", data)
# 2、实例化一个转换器类
transfer = VarianceThreshold(threshold=1)#0.1阈值
# 3、调用fit_transform
data_new = transfer.fit_transform(data)
print("data_new:\n",data_new)
PCA降维
from sklearn.dec**** import PCAdata = [[1, 2, 3, 4],[1, 2, 3, 4],[1, 2, 3, 4],[1, 2, 3, 4]
]
pac = PCA(n_com**** = 0.95)data = pca.fit_transfrom(data)print(f"降维后的数据为:{data}"}
相关文章:
机器学习(1)
一、机器学习 机器学习(Machine Learning, ML)是人工智能(Artificial Intelligence, AI)的一个分支,它致力于开发能够从数据中学习并改进性能的算法和模型。机器学习的核心思想是通过数据和经验自动优化算法ÿ…...
深入理解 Redis跳跃表 Skip List 原理|图解查询、插入
1. 简介 跳跃表 ( skip list ) 是一种有序数据结构,通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的。 在 Redis 中,跳跃表是有序集合键的底层实现之一,那么这篇文章我们就来讲讲跳跃表的实现原理。 2. …...
Halcon HImage 与 Qt QImage 的相互转换(修订版)
很久以前,我写过一遍文章来介绍 HImage 和 QImage 之间的转换方法。(https://blog.csdn.net/liyuanbhu/article/details/91356988) 这个代码其实是有些问题的。因为我们知道 QImage 中的图像数据不一定是连续的,尤其是图像的宽度…...
【Golang】——Gin 框架中的模板渲染详解
Gin 框架支持动态网页开发,能够通过模板渲染结合数据生成动态页面。在这篇文章中,我们将一步步学习如何在 Gin 框架中配置模板、渲染动态数据,并结合静态资源文件创建一个功能完整的动态网站。 文章目录 1. 什么是模板渲染?1.1 概…...
CSS:导航栏三角箭头
用CSS实现导航流程图的样式。可根据自己的需求进行修改,代码精略的写了一下。 注:场景一和场景二在分辨率比较低的情况下会有一个1px的缝隙不太优雅,自行处理。有个方法是直接在每个外面包一个DIV,用动态样式设置底色。 场景一、…...
onlyoffice Command service(命令服务)使用示例
一、说明 文档在这里:https://api.onlyoffice.com/docs/docs-api/additional-api/command-service/ 命令服务提供有几个简单的接口封装。也提供了前端和后端同时操作文档的可能。 二、正文 命令服务地址:https://documentserver/coauthoring/Com…...
QSS 设置bug
问题描述: 在QWidget上add 一个QLabel,但是死活不生效 原因: c 主程序如下: QWidget* LOGO new QWidget(logo_wnd);LOGO->setFixedSize(logo_width, 41);LOGO->setObjectName("TittltLogo");QVBoxLayout* tit…...
交换排序——快速排序
交换排序——快速排序 7.7 交换排序——快速排序快速排序概念c语言的库函数qsort快速排序框架quickSort 7.7 交换排序——快速排序 快速排序概念 快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法(下文简称快排),其基本思想为&a…...
nodejs入门(1):nodejs的前后端分离
一、引言 我关注nodejs还是从前几年做了的一个电力大数据展示系统开始的,当然,我肯定是很多年的计算机基础的,万变不离其宗。 现在web网站都流行所谓的前后端结构,不知不觉我也开始受到这个影响,以前都是前端直接操作…...
笔记|M芯片MAC (arm64) docker上使用 export / import / commit 构建amd64镜像
很简单的起因,我的东西最终需要跑在amd64上,但是因为mac的架构师arm64,所以直接构建好的代码是没办法跨平台运行的。直接在arm64上pull下来的docker镜像也都是arm64架构。 检查镜像架构: docker inspect 8135f475e221 | grep Arc…...
gorm框架
连接 需要下载mysql的驱动 go get gorm.io/driver/mysql go get gorm.io/gorm 约定 主键:GORM 使用一个名为ID 的字段作为每个模型的默认主键。表名:默认情况下,GORM 将结构体名称转换为 snake_case 并为表名加上复数形式。 例如…...
免费送源码:Java+Springboot+MySQL Springboot多租户博客网站的设计 计算机毕业设计原创定制
Springboot多租户博客网站的设计 摘 要 博客网站是当今网络的热点,博客技术的出现使得每个人可以零成本、零维护地创建自己的网络媒体,Blog站点所形成的网状结构促成了不同于以往社区的Blog文化,Blog技术缔造了“博客”文化。本文课题研究的“…...
【ASR技术】WhisperX安装使用
介绍 WhisperX 是一个开源的自动语音识别(ASR)项目,由 m-bain 开发。该项目基于 OpenAI 的 Whisper 模型,通过引入批量推理、强制音素对齐和语音活动检测等技术。提供快速自动语音识别(large-v2 为 70 倍实时…...
【计算机网络】协议定制
一、结构化数据传输流程 这里涉及协议定制、序列化/反序列化的知识 对于序列化和反序列化,有现成的解决方案:①json ②probuff ③xml 二、理解发送接收函数 我们调用的所有发送/接收函数,根本就不是把数据发送到网络中!本质都是…...
【SQL】mysql常用命令
为方便查询,特整理MySQL常用命令。 约定:$后为Shell环境命令,>后为MySQL命令。 1 常用命令 第一步,连接数据库。 $ mysql -u root -p # 进入MySQL bin目录后执行,回车后输入密码连接。# 常用参数&…...
阿里云引领智算集群网络架构的新一轮变革
阿里云引领智算集群网络架构的新一轮变革 云布道师 11 月 8 日~ 10 日在江苏张家港召开的 CCF ChinaNet(即中国网络大会)上,众多院士、教授和业界技术领袖齐聚一堂,畅谈网络未来的发展方向,聚焦智算集群网络的创新变…...
几何合理的分片段感知的3D分子生成 FragGen - 评测
FragGen 来源于 2024 年 3 月 25 日 预印本的文章,文章题目是 Deep Geometry Handling and Fragment-wise Molecular 3D Graph Generation, 作者是 Odin Zhang,侯廷军,浙江大学药学院。FragGen 是一个基于分子片段的 3D 分子生成模…...
Python爬虫下载新闻,Flask展现新闻(2)
上篇讲了用Python从新闻网站上下载新闻,本篇讲用Flask展现新闻。关于Flask安装网上好多教程,不赘述。下面主要讲 HTML-Flask-数据 的关系。 简洁版 如图,页面简单,主要显示新闻标题。 分页,使用最简单的分页技术&…...
监控易监测对象及指标之:全面监控华为FusionInsight服务
随着大数据技术的广泛应用,华为FusionInsight以其卓越的性能和稳定性,成为了众多企业处理和分析海量数据的首选平台。然而,为了确保FusionInsight服务的持续稳定运行,对其进行全面监控至关重要。本文基于监控易工具,对…...
SQL面试题——蚂蚁SQL面试题 会话分组问题
会话分组问题 这里的分组不是简单的分组,而是会话的分组。 比如说,进入一个网站以后,可以连续的点击很多个页面,后台会记录用户的行为日志; 如果T日上午连续点击几个页面后退出了网站,直到第二天的下午才再次进入网站,单单从时间线上来看,昨天退出的那条日志跟今天进…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...
