深入理解Redis(七)----Redis实现分布式锁
基于Redis的实现方式
1、选用Redis实现分布式锁原因:
(1)Redis有很高的性能;
(2)Redis命令对此支持较好,实现起来比较方便
2、使用命令介绍:
(1)SETNX
SETNX key val:当且仅当key不存在时,set一个key为val的字符串,返回1;若key存在,则什么都不做,返回0。
(2)expire
expire key timeout:为key设置一个超时时间,单位为second,超过这个时间锁会自动释放,避免死锁。
(3)delete
delete key:删除key
在使用Redis实现分布式锁的时候,主要就会使用到这三个命令。
3、实现思想:
(1)获取锁的时候,使用setnx加锁,并使用expire命令为锁添加一个超时时间,超过该时间则自动释放锁,锁的value值为一个随机生成的UUID,通过此在释放锁的时候进行判断。
(2)获取锁的时候还设置一个获取的超时时间,若超过这个时间则放弃获取锁。
(3)释放锁的时候,通过UUID判断是不是该锁,若是该锁,则执行delete进行锁释放。
4、 分布式锁的简单实现代码:
/*** 分布式锁的简单实现代码* Created by liuyang on 2017/4/20.*/
public class DistributedLock {private final JedisPool jedisPool;public DistributedLock(JedisPool jedisPool) {this.jedisPool = jedisPool;}/*** 加锁* @param lockName 锁的key* @param acquireTimeout 获取超时时间* @param timeout 锁的超时时间* @return 锁标识*/public String lockWithTimeout(String lockName, long acquireTimeout, long timeout) {Jedis conn = null;String retIdentifier = null;try {// 获取连接conn = jedisPool.getResource();// 随机生成一个valueString identifier = UUID.randomUUID().toString();// 锁名,即key值String lockKey = "lock:" + lockName;// 超时时间,上锁后超过此时间则自动释放锁int lockExpire = (int) (timeout / 1000);// 获取锁的超时时间,超过这个时间则放弃获取锁long end = System.currentTimeMillis() + acquireTimeout;while (System.currentTimeMillis() < end) {if (conn.setnx(lockKey, identifier) == 1) {conn.expire(lockKey, lockExpire);// 返回value值,用于释放锁时间确认retIdentifier = identifier;return retIdentifier;}// 返回-1代表key没有设置超时时间,为key设置一个超时时间if (conn.ttl(lockKey) == -1) {conn.expire(lockKey, lockExpire);}try {Thread.sleep(10);} catch (InterruptedException e) {Thread.currentThread().interrupt();}}} catch (JedisException e) {e.printStackTrace();} finally {if (conn != null) {conn.close();}}return retIdentifier;}/*** 释放锁* @param lockName 锁的key* @param identifier 释放锁的标识* @return*/public boolean releaseLock(String lockName, String identifier) {Jedis conn = null;String lockKey = "lock:" + lockName;boolean retFlag = false;try {conn = jedisPool.getResource();while (true) {// 监视lock,准备开始事务conn.watch(lockKey);// 通过前面返回的value值判断是不是该锁,若是该锁,则删除,释放锁if (identifier.equals(conn.get(lockKey))) {Transaction transaction = conn.multi();transaction.del(lockKey);List<Object> results = transaction.exec();if (results == null) {continue;}retFlag = true;}conn.unwatch();break;}} catch (JedisException e) {e.printStackTrace();} finally {if (conn != null) {conn.close();}}return retFlag;}
}
5、测试刚才实现的分布式锁
例子中使用50个线程模拟秒杀一个商品,使用–运算符来实现商品减少,从结果有序性就可以看出是否为加锁状态。
模拟秒杀服务,在其中配置了jedis线程池,在初始化的时候传给分布式锁,供其使用。
/*** Created by liuyang on 2017/4/20.*/
public class Service {private static JedisPool pool = null;private DistributedLock lock = new DistributedLock(pool);int n = 500;static {JedisPoolConfig config = new JedisPoolConfig();// 设置最大连接数config.setMaxTotal(200);// 设置最大空闲数config.setMaxIdle(8);// 设置最大等待时间config.setMaxWaitMillis(1000 * 100);// 在borrow一个jedis实例时,是否需要验证,若为true,则所有jedis实例均是可用的config.setTestOnBorrow(true);pool = new JedisPool(config, "127.0.0.1", 6379, 3000);}public void seckill() {// 返回锁的value值,供释放锁时候进行判断String identifier = lock.lockWithTimeout("resource", 5000, 1000);System.out.println(Thread.currentThread().getName() + "获得了锁");System.out.println(--n);lock.releaseLock("resource", identifier);}
}
模拟线程进行秒杀服务:
public class ThreadA extends Thread {private Service service;public ThreadA(Service service) {this.service = service;}@Overridepublic void run() {service.seckill();}
}public class Test {public static void main(String[] args) {Service service = new Service();for (int i = 0; i < 50; i++) {ThreadA threadA = new ThreadA(service);threadA.start();}}
}
结果如下,结果为有序的:
若注释掉使用锁的部分:
public void seckill() {// 返回锁的value值,供释放锁时候进行判断//String indentifier = lock.lockWithTimeout("resource", 5000, 1000);System.out.println(Thread.currentThread().getName() + "获得了锁");System.out.println(--n);//lock.releaseLock("resource", indentifier);
}
从结果可以看出,有一些是异步进行的:
上述实现存在的问题
-
非原子性操作
加锁setnx和锁超时expire两个命令未非原子性操作,当执行加锁setnx后,若因网络或客户端问题锁超时expire命令未成功执行时,锁将无法被释放。
解决方案:
使用set命令取代setnx和expire命令。setnx本身不支持设置超时时间。在Redis 2.6.12以上版本为set指令增加了可选参数,伪代码:set(key, value, expire)。
误删锁
设想如下情形:
(1)JVM1使用set(001, 002, 30)成功获取锁,并设置超时时间为30s;
(2)JVM1开始数据处理,处理时间已经超过了30s...
(3)服务器检测到(001, 002, 30)数据超时,将自动执行del进行数据删除,此时JVM1还在数据处理...
(4)此时,JVM2使用set(001, 002, 30)成功获取锁,并设置超时时间为30s;
(5)JVM2开始数据处理。与此同时,JVM1处理完成,操作提交后,根据商品id001,执行了del;
到此,JVM1成功误删了JVM2的锁。
解决方案:
del数据之前,增加锁判断机制:判断要删除的锁是否属于本线程。操作流程:
(1)加锁:set(id, threadId,expire),其中value为当前线程ID;
(2)解锁:执行del命令时,根据id和threadId数据判断该锁是否仍属于本线程。是,则删除。-
并发问题
基于误删锁的前提下,由于我们无法确定程序成功处理完成数据的具体时间,这就为超时时间的设置提出了难题。设置时间过长、过短都将影响程序并发的效率。
解决方案:JVM1需要自己判断在超时时间内是否完成数据处理,如未完成,应请求延长超时时间。具体操作:
为获取锁的锁的线程开启一个守护线程。当29秒时(或更早),线程A还没执行完,守护线程会执行expire指令,为这把锁“续命”20秒。守护线程从第29秒开始执行,每20秒执行一次。当线程A执行完任务,会显式关掉守护线程。
image另一种情况:如果节点1 忽然断电,由于线程A和守护线程在同一个进程,守护线程也会停下。当过了超时时间后,没有守护进程的“续命”,锁将自动释放。
Redisson实现Redis分布式锁的底层原理
好的,接下来就通过一张手绘图,给大家说说Redisson这个开源框架对Redis分布式锁的实现原理。
(1)加锁机制
咱们来看上面那张图,现在某个客户端要加锁。如果该客户端面对的是一个redis cluster集群,他首先会根据hash节点选择一台机器。
这里注意,仅仅只是选择一台机器!这点很关键!
紧接着,就会发送一段lua脚本到redis上,那段lua脚本如下所示:
为啥要用lua脚本呢?
因为一大坨复杂的业务逻辑,可以通过封装在lua脚本中发送给redis,保证这段复杂业务逻辑执行的原子性。
那么,这段lua脚本是什么意思呢?
KEYS[1]代表的是你加锁的那个key,比如说:
RLock lock = redisson.getLock("myLock");
这里你自己设置了加锁的那个锁key就是“myLock”。
ARGV[1]代表的就是锁key的默认生存时间,默认30秒。
ARGV[2]代表的是加锁的客户端的ID,类似于下面这样:
8743c9c0-0795-4907-87fd-6c719a6b4586:1
给大家解释一下,第一段if判断语句,就是用“exists myLock”命令判断一下,如果你要加锁的那个锁key不存在的话,你就进行加锁。
如何加锁呢?很简单,用下面的命令:
hset myLock
8743c9c0-0795-4907-87fd-6c719a6b4586:1 1
通过这个命令设置一个hash数据结构,这行命令执行后,会出现一个类似下面的数据结构:
上述就代表“8743c9c0-0795-4907-87fd-6c719a6b4586:1”这个客户端对“myLock”这个锁key完成了加锁。
接着会执行“pexpire myLock 30000”命令,设置myLock这个锁key的生存时间是30秒。
好了,到此为止,ok,加锁完成了。
(2)锁互斥机制
那么在这个时候,如果客户端2来尝试加锁,执行了同样的一段lua脚本,会咋样呢?
很简单,第一个if判断会执行“exists myLock”,发现myLock这个锁key已经存在了。
接着第二个if判断,判断一下,myLock锁key的hash数据结构中,是否包含客户端2的ID,但是明显不是的,因为那里包含的是客户端1的ID。
所以,客户端2会获取到pttl myLock返回的一个数字,这个数字代表了myLock这个锁key的剩余生存时间。比如还剩15000毫秒的生存时间。
此时客户端2会进入一个while循环,不停的尝试加锁。
(3)watch dog自动延期机制
客户端1加锁的锁key默认生存时间才30秒,如果超过了30秒,客户端1还想一直持有这把锁,怎么办呢?
简单!只要客户端1一旦加锁成功,就会启动一个watch dog看门狗,他是一个后台线程,会每隔10秒检查一下,如果客户端1还持有锁key,那么就会不断的延长锁key的生存时间。
(4)可重入加锁机制
那如果客户端1都已经持有了这把锁了,结果可重入的加锁会怎么样呢?
比如下面这种代码:
这时我们来分析一下上面那段lua脚本。
第一个if判断肯定不成立,“exists myLock”会显示锁key已经存在了。
第二个if判断会成立,因为myLock的hash数据结构中包含的那个ID,就是客户端1的那个ID,也就是“8743c9c0-0795-4907-87fd-6c719a6b4586:1”
此时就会执行可重入加锁的逻辑,他会用:
incrby myLock
8743c9c0-0795-4907-87fd-6c71a6b4586:1 1
通过这个命令,对客户端1的加锁次数,累加1。
此时myLock数据结构变为下面这样:
大家看到了吧,那个myLock的hash数据结构中的那个客户端ID,就对应着加锁的次数
(5)释放锁机制
如果执行lock.unlock(),就可以释放分布式锁,此时的业务逻辑也是非常简单的。
其实说白了,就是每次都对myLock数据结构中的那个加锁次数减1。
如果发现加锁次数是0了,说明这个客户端已经不再持有锁了,此时就会用:
“del myLock”命令,从redis里删除这个key。
然后呢,另外的客户端2就可以尝试完成加锁了。
这就是所谓的分布式锁的开源Redisson框架的实现机制。
一般我们在生产系统中,可以用Redisson框架提供的这个类库来基于redis进行分布式锁的加锁与释放锁。
(6)上述Redis分布式锁的缺点
其实上面那种方案最大的问题,就是如果你对某个redis master实例,写入了myLock这种锁key的value,此时会异步复制给对应的master slave实例。
但是这个过程中一旦发生redis master宕机,主备切换,redis slave变为了redis master。
接着就会导致,客户端2来尝试加锁的时候,在新的redis master上完成了加锁,而客户端1也以为自己成功加了锁。
此时就会导致多个客户端对一个分布式锁完成了加锁。
这时系统在业务语义上一定会出现问题,导致各种脏数据的产生。
所以这个就是redis cluster,或者是redis master-slave架构的主从异步复制导致的redis分布式锁的最大缺陷:在redis master实例宕机的时候,可能导致多个客户端同时完成加锁。
引用(本文章只供本人学习以及学习的记录,如有侵权,请联系我删除)
拜托,面试请不要再问我Redis分布式锁的实现原理
分布式锁简单入门以及三种实现方式介绍
Redis实现分布式锁
喜欢的朋友记得点赞、收藏、关注哦!!!
相关文章:
深入理解Redis(七)----Redis实现分布式锁
基于Redis的实现方式 1、选用Redis实现分布式锁原因: (1)Redis有很高的性能; (2)Redis命令对此支持较好,实现起来比较方便 2、使用命令介绍: (1)SETNX SETNX …...
Database Advantages (数据库系统的优点)
数据库管理系统(DBMS)提供了一种结构化的方式来存储、管理和访问数据,与传统的文件处理系统相比,数据库提供了许多显著的优点。以下是数据库系统的主要优势: 1. Data Integrity (数据完整性) 概念:数据完整…...
Qt桌面应用开发 第五天(常用控件)
目录 1.QPushButton和ToolButton 1.1QPushButton 1.2ToolButton 2.RadioButton和CheckBox 2.1RadioButton单选按钮 2.2CheckBox多选按钮 3.ListWidget 4.TreeWidget控件 5.TableWidget控件 6.Containers控件 6.1QScrollArea 6.2QToolBox 6.3QTabWidget 6.4QStacke…...
初识Linux · 信号处理 · 续
目录 前言: 可重入函数 重谈进程等待和优化 前言: 在前文,我们已经介绍了信号产生,信号保存,信号处理的主题内容,本文作为信号处理的续篇,主要是介绍一些不那么重要的内容,第一个…...
【Linux】虚拟地址空间,页表,物理内存
目录 进程地址空间,页表,物理内存 什么叫作地址空间? 如何理解地址空间的区域划分? 地址空间结构体 为什么要有地址空间? 页表 cr3寄存器 权限标记位 位置标记位 其他 每个存储单元是一个字节,一…...
C++ 并发专题 - 线程安全的单例模式
一:概述: 在C编程中,call_once 是一种机制,用于确保某个函数或代码段在多线程环境下仅被调用一次。这种机制常用于初始化资源、配置全局变量或执行只需执行一次的逻辑。在 C11 标准中,std::call_once 是由标准库提供的…...
Spring Boot汽车世界:资讯与技术的交汇
2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统,它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等,非常…...
力扣 LeetCode 541. 反转字符串II(Day4:字符串)
解题思路: i可以成段成段的跳,而不是简单的i class Solution {public String reverseStr(String s, int k) {char[] ch s.toCharArray();// 1. 每隔 2k 个字符的前 k 个字符进行反转for (int i 0; i < ch.length; i 2 * k) {// 2. 剩余字符小于 …...
Django5 2024全栈开发指南(一):框架简介、环境搭建与项目结构
目录 一、Python Web框架要点二、Django流程2.1 Django介绍2.1.1 简介2.1.2 特点2.1.3 MVT模式2.1.4 Django新特性2.1.5 Django学习资料 2.2 搭建Django框架开发环境2.2.1 安装Python语言环境2.2.2 安装Django框架 2.3 创建Django项目2.4 Pycharm创建项目2.5 初试Django52.5.1 …...
Uniapp运行环境判断和解决跨端兼容性详解
Uniapp运行环境判断和解决跨端兼容性 开发环境和生产环境 uniapp可通过process.env.NODE_ENV判断当前环境是开发环境还是生产环境,一般用于链接测试服务器或者生产服务器的动态切换。在HX中,点击运行编译出来的代码是开发环境,点击发行编译…...
Linux设置开机自动执行脚本 rc-local
使用/etc/rc.local 1、启动rc-local服务 首先授予执行权限 chmod x /etc/rc.d/rc.local设置开启自启并启动 sudo systemctl enable rc-local sudo systemctl start rc-local查看状态 sudo systemctl status rc-local2、编写要执行的脚本 vim /home/start.sh #!/bin/bash…...
驱动开发小问题 -记录一下
1 D:\Windows Kits\10\Vsix\VS2022\10.0.26100.0\amd64 D:\Windows Kits\10\Vsix\VS2019 2 windows防火墙白板 无法设置通过powershell防火墙禁用 Set-NetFirewallProfile -Profile Domain,Public,Private -Enabled False 3 内核调试 vm虚拟机 设置成 NAT模式 ÿ…...
学习笔记018——若依框架数据权限功能的实现
ps:本文所使用的若依是前后端分离的v3.6.0版本。 1、建表 建立业务表的时候,需要在表中添加user_id和dept_id两个字段。(字段一定要一样,下文能体现) user_id:表中该条记录的创建人id dept_id࿱…...
Nginx文件下载服务器搭建
Nginx文件下载服务器搭建 80端口启动下载服务器, 下载/var/www/downloads目录下的文件,nginx.conf如下: server {listen 80;location /downloads/ {root /var/www/downloads;autoindex on; # 显示目录autoindex_localtime on;} }浏览器中访问ÿ…...
AWD脚本编写_1
AWD脚本编写_1 shell.php(放在网站根目录下) <?php error_reporting(0); eval($_GET["yanxiao"]); ?>脚本编写成功 后门文件利用与解析 import requests import base64def get_flag(url, flag_url, method, passwd, flag_path):cmd…...
HarmonyOS 如何获取设备信息(系统、版本、网络连接状态)
文章目录 前言一、引入模块和基本设备信息的获取二、设备硬件和系统版本信息的获取三、获取安全相关的设备信息四、获取网络状态信息五、完整 Demo 代码1. 导入所需模块2. 获取设备基本信息代码解析 3. 检测网络连接状态4. 执行函数 总结 前言 HarmonyOS 提供了一个强大的 API…...
2411rust,1.80
1.80.0稳定版 LazyCell和LazyLock 这些"懒"类型会延迟初化其数据,直到第一次访问.它们类似1.70中稳定的OnceCell和OnceLock类型,但单元中包含初化函数. 这稳定化了从流行的lazy_static和once_cell中进入标准库. LazyLock是线安选项,使其适合静态值等位置.如,产生…...
FPGA 第6讲 简单组合逻辑多路选择器
时间:2024.11.11-11.14 一、学习内容 1.组合逻辑 组合逻辑是VerilgHDL设计中一个重要组成部分。从电路本质上讲,组合逻辑电路的特点是输出信号只是当前时刻输入信号的函数,与其他时刻的输入状态无关,无存储电路,也没…...
Android Studio开发学习(五)———LinearLayout(线性布局)
一、布局 认识了解一下Android中的布局,分别是: LinearLayout(线性布局),RelativeLayout(相对布局),TableLayout(表格布局), FrameLayout(帧布局),AbsoluteLayout(绝对布局),GridLayout(网格布局) 等。 二、…...
大模型(LLMs)RAG 版面分析------文本分块面
一、为什么需要对文本分块? 使用大型语言模型(LLM)时,切勿忽略文本分块的重要性,其对处理结果的好坏有重大影响。 考虑以下场景:你面临一个几百页的文档,其中充满了文字,你希望对其…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
