当前位置: 首页 > news >正文

BERT的中文问答系统32

我们需要在现有的代码基础上增加网络搜索功能,并在大模型无法提供满意答案时调用网络搜索。以下是完整的代码和文件结构说明,我们创建一个完整的项目结构,包括多个文件和目录。这个项目将包含以下部分:

主文件 (main.py):包含GUI界面和模型加载、训练、评估等功能。
网络请求模块 (web_search.py):用于从互联网获取信息。
日志配置文件 (logging.conf):用于配置日志记录。
模型文件 (xihua_model.pth):训练好的模型权重文件。
数据文件 (train_data.jsonl, test_data.jsonl):训练和测试数据文件。
项目结构:包括上述文件和目录。
项目结构

project_root/
├── data/
│   ├── train_data.jsonl
│   └── test_data.jsonl
├── logs/
│   └── (log files will be generated here)
├── models/
│   └── xihua_model.pth
├── main.py
├── web_search.py
└── logging.conf

文件内容
main.py

import os
import json
import jsonlines
import torch
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from transformers import BertModel, BertTokenizer
import tkinter as tk
from tkinter import filedialog, messagebox, ttk
import logging
from difflib import SequenceMatcher
from datetime import datetime
from web_search import search_web# 获取项目根目录
PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__))# 配置日志
LOGS_DIR = os.path.join(PROJECT_ROOT, 'logs')
os.makedirs(LOGS_DIR, exist_ok=True)def setup_logging():log_file = os.path.join(LOGS_DIR, datetime.now().strftime('%Y-%m-%d_%H-%M-%S_羲和.txt'))logging.basicConfig(level=logging.INFO,format='%(asctime)s - %(levelname)s - %(message)s',handlers=[logging.FileHandler(log_file),logging.StreamHandler()])setup_logging()# 数据集类
class XihuaDataset(Dataset):def __init__(self, file_path, tokenizer, max_length=128):self.tokenizer = tokenizerself.max_length = max_lengthself.data = self.load_data(file_path)def load_data(self, file_path):data = []if file_path.endswith('.jsonl'):with jsonlines.open(file_path) as reader:for i, item in enumerate(reader):try:data.append(item)except jsonlines.jsonlines.InvalidLineError as e:logging.warning(f"跳过无效行 {i + 1}: {e}")elif file_path.endswith('.json'):with open(file_path, 'r') as f:try:data = json.load(f)except json.JSONDecodeError as e:logging.warning(f"跳过无效文件 {file_path}: {e}")return datadef __len__(self):return len(self.data)def __getitem__(self, idx):item = self.data[idx]question = item['question']human_answer = item['human_answers'][0]chatgpt_answer = item['chatgpt_answers'][0]try:inputs = self.tokenizer(question, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)human_inputs = self.tokenizer(human_answer, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)chatgpt_inputs = self.tokenizer(chatgpt_answer, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)except Exception as e:logging.warning(f"跳过无效项 {idx}: {e}")return self.__getitem__((idx + 1) % len(self.data))return {'input_ids': inputs['input_ids'].squeeze(),'attention_mask': inputs['attention_mask'].squeeze(),'human_input_ids': human_inputs['input_ids'].squeeze(),'human_attention_mask': human_inputs['attention_mask'].squeeze(),'chatgpt_input_ids': chatgpt_inputs['input_ids'].squeeze(),'chatgpt_attention_mask': chatgpt_inputs['attention_mask'].squeeze(),'human_answer': human_answer,'chatgpt_answer': chatgpt_answer}# 获取数据加载器
def get_data_loader(file_path, tokenizer, batch_size=8, max_length=128):dataset = XihuaDataset(file_path, tokenizer, max_length)return DataLoader(dataset, batch_size=batch_size, shuffle=True)# 模型定义
class XihuaModel(torch.nn.Module):def __init__(self, pretrained_model_name='F:/models/bert-base-chinese'):super(XihuaModel, self).__init__()self.bert = BertModel.from_pretrained(pretrained_model_name)self.classifier = torch.nn.Linear(self.bert.config.hidden_size, 1)def forward(self, input_ids, attention_mask):outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)pooled_output = outputs.pooler_outputlogits = self.classifier(pooled_output)return logits# 训练函数
def train(model, data_loader, optimizer, criterion, device, progress_var=None):model.train()total_loss = 0.0num_batches = len(data_loader)for batch_idx, batch in enumerate(data_loader):try:input_ids = batch['input_ids'].to(device)attention_mask = batch['attention_mask'].to(device)human_input_ids = batch['human_input_ids'].to(device)human_attention_mask = batch['human_attention_mask'].to(device)chatgpt_input_ids = batch['chatgpt_input_ids'].to(device)chatgpt_attention_mask = batch['chatgpt_attention_mask'].to(device)optimizer.zero_grad()human_logits = model(human_input_ids, human_attention_mask)chatgpt_logits = model(chatgpt_input_ids, chatgpt_attention_mask)human_labels = torch.ones(human_logits.size(0), 1).to(device)chatgpt_labels = torch.zeros(chatgpt_logits.size(0), 1).to(device)loss = criterion(human_logits, human_labels) + criterion(chatgpt_logits, chatgpt_labels)loss.backward()optimizer.step()total_loss += loss.item()if progress_var:progress_var.set((batch_idx + 1) / num_batches * 100)except Exception as e:logging.warning(f"跳过无效批次: {e}")return total_loss / len(data_loader)# 评估函数
def evaluate(model, data_loader, device):model.eval()correct_predictions = 0total_predictions = 0with torch.no_grad():for batch in data_loader:input_ids = batch['input_ids'].to(device)attention_mask = batch['attention_mask'].to(device)human_input_ids = batch['human_input_ids'].to(device)human_attention_mask = batch['human_attention_mask'].to(device)chatgpt_input_ids = batch['chatgpt_input_ids'].to(device)chatgpt_attention_mask = batch['chatgpt_attention_mask'].to(device)human_logits = model(human_input_ids, human_attention_mask)chatgpt_logits = model(chatgpt_input_ids, chatgpt_attention_mask)human_labels = torch.ones(human_logits.size(0), 1).to(device)chatgpt_labels = torch.zeros(chatgpt_logits.size(0), 1).to(device)human_preds = (torch.sigmoid(human_logits) > 0.5).float()chatgpt_preds = (torch.sigmoid(chatgpt_logits) > 0.5).float()correct_predictions += (human_preds == human_labels).sum().item()correct_predictions += (chatgpt_preds == chatgpt_labels).sum().item()total_predictions += human_labels.size(0) + chatgpt_labels.size(0)accuracy = correct_predictions / total_predictionsreturn accuracy# 主训练函数
def main_train(retrain=False):device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')logging.info(f'Using device: {device}')tokenizer = BertTokenizer.from_pretrained('F:/models/bert-base-chinese')model = XihuaModel(pretrained_model_name='F:/models/bert-base-chinese').to(device)if retrain:model_path = os.path.join(PROJECT_ROOT, 'models/xihua_model.pth')if os.path.exists(model_path):model.load_state_dict(torch.load(model_path, map_location=device))logging.info("加载现有模型")else:logging.info("没有找到现有模型,将使用预训练模型")optimizer = optim.Adam(model.parameters(), lr=1e-5)criterion = torch.nn.BCEWithLogitsLoss()train_data_loader = get_data_loader(os.path.join(PROJECT_ROOT, 'data/train_data.jsonl'), tokenizer, batch_size=8, max_length=128)num_epochs = 30for epoch in range(num_epochs):train_loss = train(model, train_data_loader, optimizer, criterion, device)logging.info(f'Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.8f}')torch.save(model.state_dict(), os.path.join(PROJECT_ROOT, 'models/xihua_model.pth'))logging.info("模型训练完成并保存")# GUI界面
class XihuaChatbotGUI:def __init__(self, root):self.root = rootself.root.title("羲和聊天机器人")self.tokenizer = BertTokenizer.from_pretrained('F:/models/bert-base-chinese')self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')self.model = XihuaModel(pretrained_model_name='F:/models/bert-base-chinese').to(self.device)self.load_model()self.model.eval()# 加载训练数据集以便在获取答案时使用self.data = self.load_data(os.path.join(PROJECT_ROOT, 'data/train_data.jsonl'))# 历史记录self.history = []self.create_widgets()def create_widgets(self):# 顶部框架top_frame = tk.Frame(self.root)top_frame.pack(pady=10)self.question_label = tk.Label(top_frame, text="问题:", font=("Arial", 12))self.question_label.grid(row=0, column=0, padx=10)self.question_entry = tk.Entry(top_frame, width=50, font=("Arial", 12))self.question_entry.grid(row=0, column=1, padx=10)self.answer_button = tk.Button(top_frame, text="获取回答", command=self.get_answer, font=("Arial", 12))self.answer_button.grid(row=0, column=2, padx=10)# 中部框架middle_frame = tk.Frame(self.root)middle_frame.pack(pady=10)self.answer_label = tk.Label(middle_frame, text="回答:", font=("Arial", 12))self.answer_label.grid(row=0, column=0, padx=10)self.answer_text = tk.Text(middle_frame, height=10, width=70, font=("Arial", 12))self.answer_text.grid(row=1, column=0, padx=10)# 底部框架bottom_frame = tk.Frame(self.root)bottom_frame.pack(pady=10)self.correct_button = tk.Button(bottom_frame, text="准确", command=self.mark_correct, font=("Arial", 12))self.correct_button.grid(row=0, column=0, padx=10)self.incorrect_button = tk.Button(bottom_frame, text="不准确", command=self.mark_incorrect, font=("Arial", 12))self.incorrect_button.grid(row=0, column=1, padx=10)self.train_button = tk.Button(bottom_frame, text="训练模型", command=self.train_model, font=("Arial", 12))self.train_button.grid(row=0, column=2, padx=10)self.retrain_button = tk.Button(bottom_frame, text="重新训练模型", command=lambda: self.train_model(retrain=True), font=("Arial", 12))self.retrain_button.grid(row=0, column=3, padx=10)self.progress_var = tk.DoubleVar()self.progress_bar = ttk.Progressbar(bottom_frame, variable=self.progress_var, maximum=100, length=200)self.progress_bar.grid(row=1, column=0, columnspan=4, pady=10)self.log_text = tk.Text(bottom_frame, height=10, width=70, font=("Arial", 12))self.log_text.grid(row=2, column=0, columnspan=4, pady=10)self.evaluate_button = tk.Button(bottom_frame, text="评估模型", command=self.evaluate_model, font=("Arial", 12))self.evaluate_button.grid(row=3, column=0, padx=10, pady=10)self.history_button = tk.Button(bottom_frame, text="查看历史记录", command=self.view_history, font=("Arial", 12))self.history_button.grid(row=3, column=1, padx=10, pady=10)self.save_history_button = tk.Button(bottom_frame, text="保存历史记录", command=self.save_history, font=("Arial", 12))self.save_history_button.grid(row=3, column=2, padx=10, pady=10)def get_answer(self):question = self.question_entry.get()if not question:messagebox.showwarning("输入错误", "请输入问题")returninputs = self.tokenizer(question, return_tensors='pt', padding='max_length', truncation=True, max_length=128)with torch.no_grad():input_ids = inputs['input_ids'].to(self.device)attention_mask = inputs['attention_mask'].to(self.device)logits = self.model(input_ids, attention_mask)if logits.item() > 0:answer_type = "羲和回答"else:answer_type = "零回答"specific_answer = self.get_specific_answer(question, answer_type)if specific_answer == "这个我也不清楚,你问问零吧":specific_answer = search_web(question)self.answer_text.delete(1.0, tk.END)self.answer_text.insert(tk.END, f"{answer_type}\n{specific_answer}")# 添加到历史记录self.history.append({'question': question,'answer_type': answer_type,'specific_answer': specific_answer,'accuracy': None  # 初始状态为未评价})def get_specific_answer(self, question, answer_type):# 使用模糊匹配查找最相似的问题best_match = Nonebest_ratio = 0.0for item in self.data:ratio = SequenceMatcher(None, question, item['question']).ratio()if ratio > best_ratio:best_ratio = ratiobest_match = itemif best_match:if answer_type == "羲和回答":return best_match['human_answers'][0]else:return best_match['chatgpt_answers'][0]return "这个我也不清楚,你问问零吧"def load_data(self, file_path):data = []if file_path.endswith('.jsonl'):with jsonlines.open(file_path) as reader:for i, item in enumerate(reader):try:data.append(item)except jsonlines.jsonlines.InvalidLineError as e:logging.warning(f"跳过无效行 {i + 1}: {e}")elif file_path.endswith('.json'):with open(file_path, 'r') as f:try:data = json.load(f)except json.JSONDecodeError as e:logging.warning(f"跳过无效文件 {file_path}: {e}")return datadef load_model(self):model_path = os.path.join(PROJECT_ROOT, 'models/xihua_model.pth')if os.path.exists(model_path):self.model.load_state_dict(torch.load(model_path, map_location=self.device))logging.info("加载现有模型")else:logging.info("没有找到现有模型,将使用预训练模型")def train_model(self, retrain=False):file_path = filedialog.askopenfilename(filetypes=[("JSONL files", "*.jsonl"), ("JSON files", "*.json")])if not file_path:messagebox.showwarning("文件选择错误", "请选择一个有效的数据文件")returntry:dataset = XihuaDataset(file_path, self.tokenizer)data_loader = DataLoader(dataset, batch_size=8, shuffle=True)# 加载已训练的模型权重if retrain:self.model.load_state_dict(torch.load(os.path.join(PROJECT_ROOT, 'models/xihua_model.pth'), map_location=self.device))self.model.to(self.device)self.model.train()optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-5)criterion = torch.nn.BCEWithLogitsLoss()num_epochs = 30for epoch in range(num_epochs):train_loss = train(self.model, data_loader, optimizer, criterion, self.device, self.progress_var)logging.info(f'Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.4f}')self.log_text.insert(tk.END, f'Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.4f}\n')self.log_text.see(tk.END)torch.save(self.model.state_dict(), os.path.join(PROJECT_ROOT, 'models/xihua_model.pth'))logging.info("模型训练完成并保存")self.log_text.insert(tk.END, "模型训练完成并保存\n")self.log_text.see(tk.END)messagebox.showinfo("训练完成", "模型训练完成并保存")except Exception as e:logging.error(f"模型训练失败: {e}")self.log_text.insert(tk.END, f"模型训练失败: {e}\n")self.log_text.see(tk.END)messagebox.showerror("训练失败", f"模型训练失败: {e}")def evaluate_model(self):test_data_loader = get_data_loader(os.path.join(PROJECT_ROOT, 'data/test_data.jsonl'), self.tokenizer, batch_size=8, max_length=128)accuracy = evaluate(self.model, test_data_loader, self.device)logging.info(f"模型评估准确率: {accuracy:.4f}")self.log_text.insert(tk.END, f"模型评估准确率: {accuracy:.4f}\n")self.log_text.see(tk.END)messagebox.showinfo("评估结果", f"模型评估准确率: {accuracy:.4f}")def mark_correct(self):if self.history:self.history[-1]['accuracy'] = Truemessagebox.showinfo("评价成功", "您认为这次回答是准确的")def mark_incorrect(self):if self.history:self.history[-1]['accuracy'] = Falsemessagebox.showinfo("评价成功", "您认为这次回答是不准确的")def view_history(self):history_window = tk.Toplevel(self.root)history_window.title("历史记录")history_text = tk.Text(history_window, height=20, width=80, font=("Arial", 12))history_text.pack(padx=10, pady=10)for entry in self.history:history_text.insert(tk.END, f"问题: {entry['question']}\n")history_text.insert(tk.END, f"回答类型: {entry['answer_type']}\n")history_text.insert(tk.END, f"具体回答: {entry['specific_answer']}\n")if entry['accuracy'] is None:history_text.insert(tk.END, "评价: 未评价\n")elif entry['accuracy']:history_text.insert(tk.END, "评价: 准确\n")else:history_text.insert(tk.END, "评价: 不准确\n")history_text.insert(tk.END, "-" * 50 + "\n")def save_history(self):file_path = filedialog.asksaveasfilename(defaultextension=".json", filetypes=[("JSON files", "*.json")])if not file_path:returnwith open(file_path, 'w') as f:json.dump(self.history, f, ensure_ascii=False, indent=4)messagebox.showinfo("保存成功", "历史记录已保存到文件")# 主函数
if __name__ == "__main__":# 启动GUIroot = tk.Tk()app = XihuaChatbotGUI(root)root.mainloop()

web_search.py

import requests
from bs4 import BeautifulSoupdef search_web(query):url = f"https://www.baidu.com/s?wd={query}"headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}response = requests.get(url, headers=headers)soup = BeautifulSoup(response.text, 'html.parser')results = []for result in soup.find_all('div', class_='c-container'):title = result.find('h3').get_text()snippet = result.find('div', class_='c-abstract')if snippet:snippet = snippet.get_text()results.append(f"{title}\n{snippet}\n")if results:return '\n'.join(results[:3])  # 返回前三个结果else:return "没有找到相关信息"

logging.conf

[loggers]
keys=root[handlers]
keys=consoleHandler,fileHandler[formatters]
keys=simpleFormatter[logger_root]
level=INFO
handlers=consoleHandler,fileHandler[handler_consoleHandler]
class=StreamHandler
level=INFO
formatter=simpleFormatter
args=(sys.stdout,)[handler_fileHandler]
class=FileHandler
level=INFO
formatter=simpleFormatter
args=('logs/羲和.log', 'a')[formatter_simpleFormatter]
format=%(asctime)s - %(levelname)s - %(message)s
datefmt=%Y-%m-%d %H:%M:%S

目录结构

project_root/
├── data/
│   ├── train_data.jsonl
│   └── test_data.jsonl
├── logs/
│   └── (log files will be generated here)
├── models/
│   └── xihua_model.pth
├── main.py
├── web_search.py
└── logging.conf

说明
main.py:主文件,包含GUI界面和模型加载、训练、评估等功能。
web_search.py:用于从百度搜索信息的模块。
logging.conf:日志配置文件,用于配置日志记录。
data/:存放训练和测试数据文件。
logs/:存放日志文件。
models/:存放训练好的模型权重文件。
通过以上结构和代码,你可以实现一个具有GUI界面的聊天机器人,该机器人可以在本地使用训练好的模型回答问题,如果模型中没有相关内容,则会联网搜索并返回相关信息。

相关文章:

BERT的中文问答系统32

我们需要在现有的代码基础上增加网络搜索功能,并在大模型无法提供满意答案时调用网络搜索。以下是完整的代码和文件结构说明,我们创建一个完整的项目结构,包括多个文件和目录。这个项目将包含以下部分: 主文件 (main.py)&#xf…...

大数据-226 离线数仓 - Flume 优化配置 自定义拦截器 拦截原理 拦截器实现 Java

点一下关注吧!!!非常感谢!!持续更新!!! Java篇开始了! 目前开始更新 MyBatis,一起深入浅出! 目前已经更新到了: Hadoop&#xff0…...

idea maven 重新构建索引

当设置maven仓库为离线模式的时候,会出现一些问题。 比如本地的仓库被各种方式手动更新之后, 举例:我需要一个spring的包,在pmo文件中写好了引入包的代码 但是由于是离线模式没有办法触发自动下载,那么这个时候我可以…...

C#桌面应用制作计算器

C#桌面应用制作简易计算器,可实现数字之间的加减乘除、AC按键清屏、Del按键清除末尾数字、/-按键取数字相反数、%按键使数字缩小100倍、按键显示运算结果等...... 页面实现效果 功能实现 布局 计算器主体使用Panel容器,然后将button控件排列放置Pane…...

细说STM32单片机DMA中断收发RTC实时时间并改善其鲁棒性的方法

目录 一、DMA基础知识 1、DMA简介 (1)DMA控制器 (2)DMA流 (3)DMA请求 (4)仲裁器 (5)DMA传输属性 2、源地址和目标地址 3、DMA传输模式 4、传输数据量的大小 5、数据宽度 6、地址指针递增 7、DMA工作模式 8、DMA流的优先级别 9、FIFO或直接模式 10、单次传输或突…...

【Unity/Animator动画系统】多层动画状态机实现角色的基本移动

文章目录 前言实现顶层地面状态四方向混合树计算动画所需参数 空中状态分层动画 前言 最近打算做个Rougelike RPG 塔科夫 混搭风格的冒险游戏。暂且就当是一个有随机元素,有基地,死亡会掉落物品的近战塔科夫罢。 花了三天时间,整合了Mixa…...

每日算法一练:剑指offer——栈与队列篇(1)

1.图书整理II 读者来到图书馆排队借还书,图书管理员使用两个书车来完成整理借还书的任务。书车中的书从下往上叠加存放,图书管理员每次只能拿取书车顶部的书。排队的读者会有两种操作: push(bookID):把借阅的书籍还到图书馆。pop…...

【Java】ArrayList与LinkedList详解!!!

目录 一🌞、List 1🍅.什么是List? 2🍅.List中的常用方法 二🌞、ArrayList 1🍍.什么是ArrayList? 2🍍.ArrayList的实例化 3🍍.ArrayList的使用 4🍍.ArrayList的遍…...

怎么用VIM查看UVM源码

利用ctags工具可以建立源码的索引表,在使用VIM或其他文本编辑器时,就可以跳转查看所调用的UVM或VIP的funtcion/task/class等源码了。 首先需要确认ctags安装,一般安装VIM后都有,如果没有可以手动安装。在VIM中可以输入:help ctag…...

数据结构C语言描述3(图文结合)--双链表、循环链表、约瑟夫环问题

前言 这个专栏将会用纯C实现常用的数据结构和简单的算法;有C基础即可跟着学习,代码均可运行;准备考研的也可跟着写,个人感觉,如果时间充裕,手写一遍比看书、刷题管用很多,这也是本人采用纯C语言…...

第二十五章 TCP 客户端 服务器通信 - TCP 设备的 READ 命令

文章目录 第二十五章 TCP 客户端 服务器通信 - TCP 设备的 READ 命令TCP 设备的 READ 命令READ 修改 $ZA 和 $ZB$ZA 和 READ 命令 第二十五章 TCP 客户端 服务器通信 - TCP 设备的 READ 命令 TCP 设备的 READ 命令 从服务器或客户端发出 READ 命令以读取客户端或服务器设置的…...

【C++】哈希表的实现详解

哈希表的实现详解 一、哈希常识1.1、哈希概念1.2、哈希冲突1.3、哈希函数(直接定执 除留余数)1.4、哈希冲突解决闭散列(线性探测 二次探测)开散列 二、闭散列哈希表的模拟实现2.1、框架2.2、哈希节点状态的类2.3、哈希表的扩容2…...

高阶C语言之五:(数据)文件

目录 文件名 文件类型 文件指针 文件的打开和关闭 文件打开模式 文件操作函数(顺序) 0、“流” 1、字符输出函数fputc 2、字符输入函数fgetc 3、字符串输出函数fputs 4、 字符串输入函数fgets 5、格式化输入函数fscanf 6、格式化输出函数fpr…...

服务器上部署并启动 Go 语言框架 **GoZero** 的项目

要在服务器上部署并启动 Go 语言框架 **GoZero** 的项目,下面是一步步的操作指南: ### 1. 安装 Go 语言环境 首先,确保你的服务器上已安装 Go 语言。如果还没有安装,可以通过以下步骤进行安装: #### 1.1 安装 Go 语…...

【Java SE 】继承 与 多态 详解

🔥博客主页🔥:【 坊钰_CSDN博客 】 欢迎各位点赞👍评论✍收藏⭐ 目录 1. 继承 1.1 继承的原因 1.2 继承的概念 1.3 继承的语法 2. 子类访问父类 2.1 子类访问父类成员变量 2.1.1 子类与父类不存在同名成员变量 2.1.2 子类…...

【大语言模型】ACL2024论文-16 基于地图制图的罗马尼亚自然语言推理语料库的新型课程学习方法

【大语言模型】ACL2024论文-16 基于地图制图的罗马尼亚自然语言推理语料库的新型课程学习方法 目录 文章目录 【大语言模型】ACL2024论文-16 基于地图制图的罗马尼亚自然语言推理语料库的新型课程学习方法目录摘要:研究背景:问题与挑战:如何解…...

秋招大概到此结束了

1、背景 学院本,软工,秋招只有同程,快手和网易面试,后两家kpi(因为面试就很水),秋招情况:哈啰(实习转正ing),同程测开offer。 2、走测开的原因 很…...

华为OD机试真题---字符串化繁为简

华为OD机试真题中的“字符串化繁为简”题目是一个涉及字符串处理和等效关系传递的问题。以下是对该题目的详细解析: 一、题目描述 给定一个输入字符串,字符串只可能由英文字母(a~z、A~Z)和左右小括号((、)&#xff0…...

概念解读|K8s/容器云/裸金属/云原生...这些都有什么区别?

随着容器技术的日渐成熟,不少企业用户都对应用系统开展了容器化改造。而在容器基础架构层面,很多运维人员都更熟悉虚拟化环境,对“容器圈”的各种概念容易混淆:容器就是 Kubernetes 吗?容器云又是什么?容器…...

初识Arkts

创建对象: 类: 类声明引入一个新类型,并定义其字段、方法和构造函数。 定义类后,可以使用关键字new创建实例 可以使用对象字面量创建实例 在以下示例中,定义了Person类,该类具有字段name和surname、构造函…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

HTML 列表、表格、表单

1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...

windows系统MySQL安装文档

概览:本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容,为学习者提供全面的操作指导。关键要点包括: 解压 :下载完成后解压压缩包,得到MySQL 8.…...