使用 PyTorch 实现 ZFNet 进行 MNIST 图像分类
在本篇博客中,我们将通过两个主要部分来演示如何使用 PyTorch 实现 ZFNet,并在 MNIST 数据集上进行训练和测试。ZFNet(ZFNet)是基于卷积神经网络(CNN)的图像分类模型,广泛用于图像识别任务。
环境准备
在开始之前,请确保你的环境已经安装了以下依赖:
pip install torch torchvision matplotlib tqdm
一、训练部分:训练 ZFNet 模型
首先,我们需要准备训练数据、定义 ZFNet 模型,并进行模型训练。
1. 数据加载与预处理
MNIST 数据集由 28x28 的手写数字图像组成。我们将通过 torchvision.datasets 来加载数据,并进行必要的预处理。
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from zfnet import ZFNet # 假设 ZFNet 定义在 zfnet.py 文件中
from tqdm import tqdm # 导入 tqdm
from torch.cuda.amp import autocast, GradScaler # 导入混合精度训练def prepare_data(batch_size=128, num_workers=2, data_dir='D:/workspace/data'):"""准备 MNIST 数据集并返回数据加载器:param batch_size: 批处理大小:param num_workers: 数据加载的工作线程数:param data_dir: 数据存储的目录:return: 训练数据加载器"""transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,)) # 正则化])trainset = datasets.MNIST(root=data_dir, train=True, download=True, transform=transform)trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True, pin_memory=True, num_workers=num_workers)return trainloader
2. 初始化模型与优化器
在这里,我们将初始化模型和优化器。我们选择 Adam 优化器,并且为提高计算效率,我们采用混合精度训练。
def initialize_device():"""初始化计算设备(GPU 或 CPU):return: 计算设备"""device = torch.device("cuda" if torch.cuda.is_available() else "cpu")print(f"Using device: {device}")return devicedef initialize_model(device):"""初始化模型并移动到指定设备:param device: 计算设备:return: 初始化好的模型"""model = ZFNet().to(device) # 假设 ZFNet 是自定义模型return modeldef initialize_optimizer(model, lr=0.001):"""初始化优化器:param model: 需要优化的模型:param lr: 学习率:return: 优化器"""optimizer = optim.Adam(model.parameters(), lr=lr)return optimizer
3. 训练模型
使用训练数据进行训练,并且每训练一个 epoch 就更新一次进度条,同时使用混合精度训练来提高效率。
def train_model(model, trainloader, criterion, optimizer, num_epochs=5, device='cuda'):"""训练模型:param model: 训练的模型:param trainloader: 数据加载器:param criterion: 损失函数:param optimizer: 优化器:param num_epochs: 训练的轮数:param device: 计算设备"""scaler = GradScaler() # 用于自动缩放梯度for epoch in range(num_epochs):model.train()running_loss = 0.0# 使用 tqdm 包裹 DataLoader 来显示进度条with tqdm(trainloader, unit="batch", desc=f"Epoch {epoch + 1}/{num_epochs}") as tepoch:for inputs, labels in tepoch:# 直接将数据和标签移动到 GPUinputs, labels = inputs.to(device, non_blocking=True), labels.to(device, non_blocking=True)optimizer.zero_grad()# 混合精度前向和反向传播with autocast(): # 自动混合精度outputs = model(inputs)loss = criterion(outputs, labels)# 反向传播与优化scaler.scale(loss).backward() # 使用混合精度反向传播scaler.step(optimizer) # 更新参数scaler.update() # 更新缩放因子running_loss += loss.item()# 更新进度条显示tepoch.set_postfix(loss=running_loss / (tepoch.n + 1))# 打印每个 epoch 的平均损失print(f"Epoch {epoch + 1}, Loss: {running_loss / len(trainloader)}")# 保存模型torch.save(model.state_dict(), 'zfnet_model.pth')print("Model saved as zfnet_model.pth")
4. 主函数
在主函数中,我们会初始化设备、模型、损失函数,并启动训练过程。
if __name__ == '__main__':"""主函数:组织所有步骤的执行"""# 数据加载trainloader = prepare_data()# 设备选择device = initialize_device()# 模型初始化model = initialize_model(device)# 损失函数criterion = torch.nn.CrossEntropyLoss()# 优化器初始化optimizer = initialize_optimizer(model)# 启动训练train_model(model, trainloader, criterion, optimizer, num_epochs=5, device=device)
二、测试部分:评估 ZFNet 模型
训练完成后,我们将加载训练好的模型,并在测试集上评估其性能。
1. 加载和预处理数据
import torch
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from zfnet import ZFNet # 假设 ZFNet 定义在 zfnet.py 文件中def load_and_preprocess_data(batch_size=1000):"""加载并预处理 MNIST 数据集:param batch_size: 数据加载的批次大小:return: 测试数据加载器"""transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))])# 下载 MNIST 测试集testset = datasets.MNIST(root='D:/workspace/data', train=False, download=True, transform=transform)# 数据加载器testloader = DataLoader(testset, batch_size=batch_size, shuffle=False)return testloader
2. 加载训练好的模型
def load_and_preprocess_data(batch_size=1000):"""加载并预处理 MNIST 数据集:param batch_size: 数据加载的批次大小:return: 测试数据加载器"""transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))])# 下载 MNIST 测试集testset = datasets.MNIST(root='D:/workspace/data', train=False, download=True, transform=transform)# 数据加载器testloader = DataLoader(testset, batch_size=batch_size, shuffle=False)return testloaderdef load_trained_model(model_path='zfnet_model.pth'):"""加载训练好的模型:param model_path: 模型文件路径:return: 加载的模型"""model = ZFNet()model.load_state_dict(torch.load(model_path))model.eval() # 设置为评估模式return model
3. 评估模型
def evaluate_model(model, testloader):"""评估模型在测试集上的表现:param model: 训练好的模型:param testloader: 测试数据加载器:return: 模型准确率"""correct = 0total = 0with torch.no_grad():for inputs, labels in testloader:outputs = model(inputs)_, predicted = torch.max(outputs, 1)total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = correct / totalreturn accuracy
4. 可视化预测结果
def visualize_predictions(model, testloader, num_images=6):"""可视化模型对多张测试图片的预测结果:param model: 训练好的模型:param testloader: 测试数据加载器:param num_images: 显示图像的数量"""model.eval()data_iter = iter(testloader)images, labels = next(data_iter)outputs = model(images)_, predicted = torch.max(outputs, 1)# 绘制结果fig, axes = plt.subplots(2, 3, figsize=(10, 7))axes = axes.ravel()for i in range(num_images):ax = axes[i]img = images[i].numpy().transpose(1, 2, 0) # 将 Tensor 转换为 NumPy 数组并转置为 HWC 格式ax.imshow(img.squeeze(), cmap='gray') # squeeze 去除单通道维度ax.set_title(f"Pred: {predicted[i].item()} | Actual: {labels[i].item()}")ax.axis('off')plt.tight_layout()plt.show()
5. 主函数
在测试阶段,我们加载模型并在测试数据集上评估它。
def main():"""主函数,组织数据加载、模型加载、评估和可视化步骤"""# 加载并预处理数据testloader = load_and_preprocess_data()# 加载训练好的模型model = load_trained_model()# 评估模型accuracy = evaluate_model(model, testloader)print(f"Accuracy: {accuracy * 100:.2f}%")# 可视化预测结果visualize_predictions(model, testloader, num_images=6)if __name__ == '__main__':main()
结语
通过本文的介绍,我们实现了一个基于 ZFNet 模型的图像分类任务,使用 PyTorch 对 MNIST 数据集进行训练与测试,并展示了如何进行混合精度训练以提高效率。在未来,你可以根据不同的任务修改模型结构、优化器或者训练策略,进一步提升性能。
完整项目ZFNet-PyTorch: 使用 PyTorch 实现 ZFNet 进行 MNIST 图像分类
https://gitee.com/qxdlll/zfnet-py-torch
相关文章:
使用 PyTorch 实现 ZFNet 进行 MNIST 图像分类
在本篇博客中,我们将通过两个主要部分来演示如何使用 PyTorch 实现 ZFNet,并在 MNIST 数据集上进行训练和测试。ZFNet(ZFNet)是基于卷积神经网络(CNN)的图像分类模型,广泛用于图像识别任务。 环…...
车轮上的科技:Spring Boot汽车新闻集散地
1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及,互联网成为人们查找信息的重要场所,二十一世纪是信息的时代,所以信息的管理显得特别重要。因此,使用计算机来管理汽车资讯网站的相关信息成为必然。开发合适…...
IDEA2023 SpringBoot整合Web开发(二)
一、SpringBoot介绍 由Pivotal团队提供的全新框架,其设计目的是用来简化Spring应用的初始搭建以及开发过程。该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。SpringBoot提供了一种新的编程范式,可以更加快速便捷…...
国产三维CAD 2025新动向:推进MBD模式,联通企业设计-制造数据
本文为CAD芯智库原创整理,未经允许请勿复制、转载! 上一篇文章阿芯分享了影响企业数字化转型的「MBD」是什么、对企业优化产品设计流程有何价值——这也是国产三维CAD软件中望3D 2024发布会上,胡其登先生(中望软件产品规划与GTM中…...
ubuntu 之 安装mysql8
安装 # 如果 ubuntu 版本 > 20.04 则不用执行 wget 这步 wget https://dev.mysql.com/get/mysql-apt-config_0.8.12-1_all.debsudo apt-get updatesudo apt-get install mysql-server mysql-client 安装过程中如果没有提示输入密码 sudo cat /etc/mysql/debian.cnf # 查…...
Flink Lookup Join(维表 Join)
Lookup Join 定义(支持 Batch\Streaming) Lookup Join 其实就是维表 Join,比如拿离线数仓来说,常常会有用户画像,设备画像等数据,而对应到实时数仓场景中,这种实时获取外部缓存的 Join 就叫做维…...
Elasticsearch retrievers 通常与 Elasticsearch 8.16.0 一起正式发布!
作者:来自 Elastic Panagiotis Bailis Elasticsearch 检索器经过了重大改进,现在可供所有人使用。了解其架构和用例。 在这篇博文中,我们将再次深入探讨检索器(retrievers)。我们已经在之前的博文中讨论过它们…...
【并发模式】Go 常见并发模式实现Runner、Pool、Work
通过并发编程在 Go 程序中实现的3种常见的并发模式。 参考:https://cloud.tencent.com/developer/article/1720733 1、Runner 定时任务 Runner 模式有代表性,能把(任务队列,超时,系统中断信号)等结合起来…...
【前端知识】Javascript前端框架Vue入门
前端框架VUE入门 概述基础语法介绍组件特性组件注册Props 属性声明事件组件 v-model(双向绑定)插槽Slots内容与出口 组件生命周期样式文件使用1. 直接在<style>标签中写CSS2. 引入外部CSS文件3. 使用CSS预处理器4. 在main.js中全局引入CSS文件5. 使用CSS Modules6. 使用P…...
Springboot3.3.5 启动流程之 Bean创建流程
在文章Springboot3.3.5 启动流程(源码分析)中我们只是粗略的介绍了bean 的装配(Bean的定义)流程和实例化流程分别开始于 finishBeanFactoryInitialization 和 preInstantiateSingletons. 其实,在Spring boot中,Bean 的装配是多阶段的…...
golang反射函数注册
package main import ( “fmt” “reflect” ) type Job interface { New([]interface{}) interface{} Run() (interface{}, error) } type DetEd struct { Name string Age int } // 为什么这样设计 // 这样就避免了 在创建新的实例的之后 结构体的方法中接受者为指针类型…...
【Spring】Bean
Spring 将管理对象称为 Bean。 Spring 可以看作是一个大型工厂,用于生产和管理 Spring 容器中的 Bean。如果要使用 Spring 生产和管理 Bean,那么就需要将 Bean 配置在 Spring 的配置文件中。Spring 框架支持 XML 和 Properties 两种格式的配置文件&#…...
深入解析TK技术下视频音频不同步的成因与解决方案
随着互联网和数字视频技术的飞速发展,音视频同步问题逐渐成为网络视频播放、直播、编辑等过程中不可忽视的技术难题。尤其是在采用TK(Transmission Keying)技术进行视频传输时,由于其特殊的时序同步要求,音视频不同步现…...
为什么要使用Ansible实现Linux管理自动化?
自动化和Linux系统管理 多年来,大多数系统管理和基础架构管理都依赖于通过图形或命令行用户界面执行的手动任务。系统管理员通常使用清单、其他文档或记忆的例程来执行标准任务。 这种方法容易出错。系统管理员很容易跳过某个步骤或在某个步骤上犯错误。验证这些步…...
Android:任意层级树形控件(有效果图和Demo示例)
先上效果图: 1.创建treeview文件夹 2.treeview -> adapter -> SimpleTreeAdapter.java import android.content.Context; import android.view.View; import android.view.ViewGroup; import android.widget.ImageView; import android.widget.ListView; i…...
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
引言 C 标准模板库(STL)提供了一组功能强大的容器类,用于存储和操作数据集合。不同的容器具有独特的特性和应用场景,因此选择合适的容器对于程序的性能和代码的可读性至关重要。对于刚接触 C 的开发者来说,了解这些容…...
C++---类型转换
文章目录 C的类型转换C的4种强制类型转换RTTI C的类型转换 类型转换 内置类型之间的转换 // a、内置类型之间 // 1、隐式类型转换 整形之间/整形和浮点数之间 // 2、显示类型的转换 指针和整形、指针之间 int main() {int i 1;// 隐式类型转换double d i;printf("%d…...
CSS基础学习练习题
编程题 1.为下面这段文字定义字体样式,要求字体类型指定多种、大小为14px、粗细为粗体、颜色为蓝色。 “有规划的人生叫蓝图,没规划的人生叫拼图。” 代码: <!DOCTYPE html> <html lang"en"> <head><me…...
TypeScript知识点总结和案例使用
TypeScript 是一种由微软开发的开源编程语言,它是 JavaScript 的超集,提供了静态类型检查和其他一些增强功能。以下是一些 TypeScript 的重要知识点总结: 1. 基本类型 TypeScript 支持多种基本数据类型,包括: numbe…...
解决BUG: Since 17.0, the “attrs“ and “states“ attributes are no longer used.
从Odoo 17.0开始,attrs和states属性不再使用,取而代之的是使用depends和domain属性来控制字段的可见性和其他行为。如果您想要在选择国家之后继续选择州,并且希望在选择了国家之后才显示州字段,您可以使用depends属性来实现这一点…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
Python竞赛环境搭建全攻略
Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型(算法、数据分析、机器学习等)不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...
【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道
文/法律实务观察组 在债务重组领域,专业机构的核心价值不仅在于减轻债务数字,更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明,合法债务优化需同步实现三重平衡: 法律刚性(债…...
