当前位置: 首页 > news >正文

利用python 检测当前目录下的所有PDF 并转化为png 格式

以下是一个完整的 Python 脚本,用于检测当前目录下的所有 PDF 文件并将每一页转换为 PNG 格式:

import os
from pdf2image import convert_from_path# 设置输出图像的 DPI(分辨率)
DPI = 300# 获取当前目录
current_directory = os.getcwd()# 获取所有 PDF 文件
pdf_files = [file for file in os.listdir(current_directory) if file.endswith('.pdf')]# 检查是否有 PDF 文件
if not pdf_files:print("当前目录没有找到任何 PDF 文件。")
else:# 创建保存 PNG 文件的文件夹output_directory = os.path.join(current_directory, "pdf_to_png_output")os.makedirs(output_directory, exist_ok=True)for pdf_file in pdf_files:pdf_path = os.path.join(current_directory, pdf_file)print(f"正在处理: {pdf_file}")# 转换 PDF 为图像try:images = convert_from_path(pdf_path, dpi=DPI)for i, image in enumerate(images):output_file = os.path.join(output_directory, f"{os.path.splitext(pdf_file)[0]}_page_{i+1}.png")image.save(output_file, "PNG")print(f"已保存: {output_file}")except Exception as e:print(f"处理文件 {pdf_file} 时出错: {e}")print("转换完成。")

使用说明

  1. 安装依赖:
    请确保安装了 pdf2imagepopplerpdf2image 需要依赖 poppler-utils)。

    conda install pdf2image
    

    对于 poppler,可以根据你的操作系统安装:

    • Windows:下载 Poppler 的二进制文件并将其添加到系统 PATH。
    • macOS:通过 brew install poppler 安装。
    • Linux:通过 apt install poppler-utils 安装。
  2. 运行脚本:
    将脚本保存为 convert_pdf_to_png.py,然后在包含 PDF 文件的目录下运行:

    python convert_pdf_to_png.py
    
  3. 结果保存:
    所有生成的 PNG 文件将保存到当前目录下的 pdf_to_png_output 文件夹中。

如果需要修改 DPI(影响图像质量),可以调整脚本中的 DPI 变量值。

相关文章:

利用python 检测当前目录下的所有PDF 并转化为png 格式

以下是一个完整的 Python 脚本,用于检测当前目录下的所有 PDF 文件并将每一页转换为 PNG 格式: import os from pdf2image import convert_from_path# 设置输出图像的 DPI(分辨率) DPI 300# 获取当前目录 current_directory os…...

解决 Spring Boot 中 `Ambiguous mapping. Cannot map ‘xxxController‘ method` 错误

前言 在使用 Spring Boot 开发 Web 应用时,经常会遇到各种各样的错误。其中一种常见的错误是 Ambiguous mapping. Cannot map ‘testController‘ method。本文将详细介绍这个错误的原因及解决方法,帮助开发者快速定位并解决问题。 错误解释 这个错误…...

C++ 函数返回值优化

本文中部分内容来自下面的文章,还有一部分来自智谱清言 C 返回值优化_c 局部变量返回优化-CSDN博客 elision:省略 copy elision:拷贝省略 RVO (Return Value Optimization):返回值优化 ------ 我最近也遇到了上面博文中说到的问题&…...

c++源码阅读__ThreadPool__正文阅读

一. 简介 本章我们开始阅读c git 高星开源项目ThreadPool, 这是一个纯c的线程池项目, 并且代码量极小, 非常适合新手阅读 git地址: progschj / ThreadPool 二. 前提知识 为了面对不同读者对c掌握情况不同的情况, 这里我会将基本上稍微值得一说的前提知识点, 全部专门写成一篇…...

关于ES的查询

查询结果那么多字段都是什么? 为什么会提到这个问题呢,因为默认ES查询的结果会有很多信息,我们可能并不希望要那么多数据,所以你需要了解这些字段都表示什么,并正确的返回和使用它们。 took– Elasticsearch 运行查询…...

数据结构初识

目录 1.初识 2.时间复杂度 常见时间复杂度举例: 3.空间复杂度 4.包装类&简单认识泛型 4.1装箱和拆箱 5.泛型 6.泛型的上界 7.泛型方法 8.List接口 1.初识 1.多画图 2.多思考 3.多写代码 4.多做题 牛客网-题库/在线编程/剑指offer 算法篇&#xff1a…...

保存数据到Oracle时报错ORA-17004: 列类型无效: 1111

1、问题描述: 关键信息:Mybatis;Oracle (1)保存信息到Oracle时报错: Caused by: org.apache.ibatis.type.TypeException: Error setting null for parameter #10 with JdbcType OTHER . Try setting a dif…...

Excel——宏教程(1)

Microsoft excel是一款功能非常强大的电子表格软件。它可以轻松地完成数据的各类数学运算,并用各种二维或三维图形形象地表示出来,从而大大简化了数据的处理工作。但若仅利用excel的常用功能来处理较复杂的数据,可能仍需进行大量的人工操作。…...

论文浅尝 | MindMap:知识图谱提示激发大型语言模型中的思维图(ACL2024)

笔记整理:和东顺,天津大学硕士,研究方向为软件缺陷分析 论文链接:https://aclanthology.org/2024.acl-long.558/ 发表会议:ACL 2024 1. 动机 虽然大语言模型(LLMs)已经在自然语言理解和生成任务…...

第6章:TDengine 标签索引和删除数据

TDengine 标签索引和删除数据 目标 掌握标签索引的创建、删除掌握超表、子表创建以及数据删除删除数据 删除数据是 TDengine 提供的根据指定时间段删除指定表或超级表中数据记录的功能,方便用户清理由于设备故障等原因产生的异常数据。 注意:删除数据并不会立即释放该表所…...

【微软:多模态基础模型】(5)多模态大模型:通过LLM训练

欢迎关注[【youcans的AGI学习笔记】](https://blog.csdn.net/youcans/category_12244543.html)原创作品 【微软:多模态基础模型】(1)从专家到通用助手 【微软:多模态基础模型】(2)视觉理解 【微…...

海外带云仓多语言商城源码,多语言多商家云仓一键代发商城

新增海外仓,云仓国际供应链系统,商家可登陆云仓进行批量发货 商城修复了一些bug以及增加了订单数字提示,优化加载速度,二开了一些细微功能 基于 PHP Laravel 框架开发的一款 Web 商城系统。 1.前端多国语言自由切换,…...

android:taskAffinity 对Activity退出时跳转的影响

android:taskAffinity 对Activity跳转的影响 概述taskAffinity 的工作机制taskAffinity对 Activity 跳转的影响一个实际的开发问题总结参考 概述 在 Android 开发中,任务栈(Task)是一个核心概念。它决定了应用程序的 Activity 如何相互交互以…...

Apache Dolphinscheduler数据质量源码分析

Apache DolphinScheduler 是一个分布式、易扩展的可视化数据工作流任务调度系统,广泛应用于数据调度和处理领域。 在大规模数据工程项目中,数据质量的管理至关重要,而 DolphinScheduler 也提供了数据质量检查的计算能力。本文将对 Apache Do…...

solana链上智能合约开发案例一则

环境搭建 安装Solana CLI:Solana CLI是开发Solana应用的基础工具。你可以通过官方文档提供的安装步骤,在本地环境中安装适合你操作系统的Solana CLI版本。安装完成后,使用命令行工具进行配置,例如设置网络环境(如开发网…...

使用 PyTorch 实现 ZFNet 进行 MNIST 图像分类

在本篇博客中,我们将通过两个主要部分来演示如何使用 PyTorch 实现 ZFNet,并在 MNIST 数据集上进行训练和测试。ZFNet(ZFNet)是基于卷积神经网络(CNN)的图像分类模型,广泛用于图像识别任务。 环…...

车轮上的科技:Spring Boot汽车新闻集散地

1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及,互联网成为人们查找信息的重要场所,二十一世纪是信息的时代,所以信息的管理显得特别重要。因此,使用计算机来管理汽车资讯网站的相关信息成为必然。开发合适…...

IDEA2023 SpringBoot整合Web开发(二)

一、SpringBoot介绍 由Pivotal团队提供的全新框架,其设计目的是用来简化Spring应用的初始搭建以及开发过程。该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。SpringBoot提供了一种新的编程范式,可以更加快速便捷…...

国产三维CAD 2025新动向:推进MBD模式,联通企业设计-制造数据

本文为CAD芯智库原创整理,未经允许请勿复制、转载! 上一篇文章阿芯分享了影响企业数字化转型的「MBD」是什么、对企业优化产品设计流程有何价值——这也是国产三维CAD软件中望3D 2024发布会上,胡其登先生(中望软件产品规划与GTM中…...

ubuntu 之 安装mysql8

安装 # 如果 ubuntu 版本 > 20.04 则不用执行 wget 这步 wget https://dev.mysql.com/get/mysql-apt-config_0.8.12-1_all.debsudo apt-get updatesudo apt-get install mysql-server mysql-client 安装过程中如果没有提示输入密码 sudo cat /etc/mysql/debian.cnf # 查…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者:来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 …...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...