1.tree of thought (使用LangChain解决4x4数独问题)
本教程将介绍如何使用LangChain库和chatglm API来解决一个4x4的数独问题。我们将通过以下步骤实现这一目标:
- 初始化chatglm 的聊天模型。
- 定义数独问题和解决方案。
- 创建一个自定义的检查器来验证每一步的思考。
- 使用ToTChain来运行整个思考过程。
1. 初始化chatglm4 的聊天模型
首先,我们需要导入langchain_openai库中的ChatOpenAI类,并初始化一个聊天模型实例。
from langchain_openai import ChatOpenAIllm = ChatOpenAI(temperature=1,model="GLM-4-Plus",openai_api_key="your api key",openai_api_base="https://open.bigmodel.cn/api/paas/v4/",max_tokens=512,
)
2. 定义数独问题和解决方案
接下来,我们定义一个4x4的数独问题和其解决方案,并生成问题描述。
sudoku_puzzle = "3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1"
sudoku_solution = "3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1"
problem_description = f"""
{sudoku_puzzle}- This is a 4x4 Sudoku puzzle.
- The * represents a cell to be filled.
- The | character separates rows.
- At each step, replace one or more * with digits 1-4.
- There must be no duplicate digits in any row, column or 2x2 subgrid.
- Keep the known digits from previous valid thoughts in place.
- Each thought can be a partial or the final solution.
""".strip()
print(problem_description)
输出结果如下:
3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1- This is a 4x4 Sudoku puzzle.
- The * represents a cell to be filled.
- The | character separates rows.
- At each step, replace one or more * with digits 1-4.
- There must be no duplicate digits in any row, column or 2x2 subgrid.
- Keep the known digits from previous valid thoughts in place.
- Each thought can be a partial or the final solution.
3. 创建自定义检查器
我们需要创建一个自定义的检查器MyChecker,用于验证每一步的思考是否有效。
import re
from typing import Tuplefrom langchain_experimental.tot.checker import ToTChecker
from langchain_experimental.tot.thought import ThoughtValidityclass MyChecker(ToTChecker):def evaluate(self, problem_description: str, thoughts: Tuple[str, ...] = ()) -> ThoughtValidity:last_thought = thoughts[-1]clean_solution = last_thought.replace(" ", "").replace('"', "")regex_solution = clean_solution.replace("*", ".").replace("|", "\\|")if sudoku_solution in clean_solution:return ThoughtValidity.VALID_FINALelif re.search(regex_solution, sudoku_solution):return ThoughtValidity.VALID_INTERMEDIATEelse:return ThoughtValidity.INVALID
4. 测试检查器
我们可以通过一些断言来测试检查器的功能。
checker = MyChecker()
assert (checker.evaluate("", ("3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1",))== ThoughtValidity.VALID_INTERMEDIATE
)
assert (checker.evaluate("", ("3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1",))== ThoughtValidity.VALID_FINAL
)
assert (checker.evaluate("", ("3,4,1,2|1,2,3,4|2,1,4,3|4,3,*,1",))== ThoughtValidity.VALID_INTERMEDIATE
)
assert (checker.evaluate("", ("3,4,1,2|1,2,3,4|2,1,4,3|4,*,3,1",))== ThoughtValidity.INVALID
)
5. 运行ToTChain
最后,我们使用ToTChain来运行整个思考过程,并尝试解决数独问题。
from langchain_experimental.tot.base import ToTChaintot_chain = ToTChain(llm=llm, checker=MyChecker(), k=30, c=5, verbose=True, verbose_llm=False
)
tot_chain.run(problem_description=problem_description)
输出结果如下:
C:\Users\32564\AppData\Local\Temp\ipykernel_5080\1223294212.py:6: LangChainDeprecationWarning: The method `Chain.run` was deprecated in langchain 0.1.0 and will be removed in 1.0. Use :meth:`~invoke` instead.tot_chain.run(problem_description=problem_description)
d:\soft\anaconda\envs\langchain\Lib\site-packages\langchain\chains\llm.py:341: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.warnings.warn([1m> Entering new ToTChain chain...[0m
Starting the ToT solve procedure.
[33;1m[1;3mThought: 3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1
[0md:\soft\anaconda\envs\langchain\Lib\site-packages\langchain\chains\llm.py:341: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.warnings.warn([31;1m[1;3m Thought: 3,1,*,2|1,*,3,*|*,1,*,3|4,*,*,1
[0m[31;1m[1;3m Thought: 3,*,4,2|1,*,3,*|*,1,*,3|4,*,*,1
[0m[33;1m[1;3m Thought: 3,*,*,2|1,2,3,*|*,1,*,3|4,*,*,1
[0md:\soft\anaconda\envs\langchain\Lib\site-packages\langchain\chains\llm.py:341: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.warnings.warn([33;1m[1;3m Thought: 3,*,*,2|1,2,3,4|*,1,*,3|4,*,*,1
[0md:\soft\anaconda\envs\langchain\Lib\site-packages\langchain\chains\llm.py:341: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.warnings.warn([33;1m[1;3m Thought: 3,*,*,2|1,2,3,4|2,1,*,3|4,*,*,1
[0md:\soft\anaconda\envs\langchain\Lib\site-packages\langchain\chains\llm.py:341: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.warnings.warn([33;1m[1;3m Thought: 3,*,*,2|1,2,3,4|2,1,4,3|4,*,*,1
[0md:\soft\anaconda\envs\langchain\Lib\site-packages\langchain\chains\llm.py:341: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.warnings.warn([33;1m[1;3m Thought: 3,*,*,2|1,2,3,4|2,1,4,3|4,3,*,1
[0md:\soft\anaconda\envs\langchain\Lib\site-packages\langchain\chains\llm.py:341: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.warnings.warn([33;1m[1;3m Thought:
[0md:\soft\anaconda\envs\langchain\Lib\site-packages\langchain\chains\llm.py:341: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.warnings.warn([33;1m[1;3m Thought:
[0md:\soft\anaconda\envs\langchain\Lib\site-packages\langchain\chains\llm.py:341: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.warnings.warn([33;1m[1;3m Thought: 3,*,*,2|1,2,3,4|2,1,4,3|4,3,2,1
[0md:\soft\anaconda\envs\langchain\Lib\site-packages\langchain\chains\llm.py:341: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.warnings.warn([33;1m[1;3m Thought: 3,*,*,2|1,2,3,4|2,1,4,3|4,3,2,1
[0md:\soft\anaconda\envs\langchain\Lib\site-packages\langchain\chains\llm.py:341: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.warnings.warn([31;1m[1;3m Thought: 3,1,*,2|1,2,3,4|2,1,4,3|4,3,2,1
[0m[33;1m[1;3m Thought: 3,4,*,2|1,2,3,4|2,1,4,3|4,3,2,1
[0md:\soft\anaconda\envs\langchain\Lib\site-packages\langchain\chains\llm.py:341: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.warnings.warn([33;1m[1;3m Thought:
[0md:\soft\anaconda\envs\langchain\Lib\site-packages\langchain\chains\llm.py:341: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.warnings.warn([33;1m[1;3m Thought:
[0md:\soft\anaconda\envs\langchain\Lib\site-packages\langchain\chains\llm.py:341: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.warnings.warn([33;1m[1;3m Thought:
[0md:\soft\anaconda\envs\langchain\Lib\site-packages\langchain\chains\llm.py:341: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.warnings.warn([32;1m[1;3m Thought: 3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1
[0m
[1m> Finished chain.[0m'3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1'
通过以上步骤,我们成功地使用LangChain解决了一个4x4的数独问题。希望这个教程对你有所帮助!如果有任何问题,欢迎随时提问。
相关文章:
1.tree of thought (使用LangChain解决4x4数独问题)
本教程将介绍如何使用LangChain库和chatglm API来解决一个4x4的数独问题。我们将通过以下步骤实现这一目标: 初始化chatglm 的聊天模型。定义数独问题和解决方案。创建一个自定义的检查器来验证每一步的思考。使用ToTChain来运行整个思考过程。 1. 初始化chatglm4…...
网络基础(4)IP协议
经过之前的学习对传输协议的学习,对于传输协议从系统底层到应用层对于socket套接字的学习已经有了一套完整的理论。 对于网络的层状结构,现在已经学习到了应用层和传输层: 在之前的学习中,通信的双方都只考虑了双方的传输层的东西࿰…...
124. 二叉树中的最大路径和【 力扣(LeetCode) 】
文章目录 零、原题链接一、题目描述二、测试用例三、解题思路四、参考代码 零、原题链接 124. 二叉树中的最大路径和 一、题目描述 二叉树中的 路径 被定义为一条节点序列,序列中每对相邻节点之间都存在一条边。同一个节点在一条路径序列中 至多出现一次 。该路径…...
echarts:简单实现默认显示两柱子折线,点击按钮后显示新的柱子
问: 用echarts实现:默认显示两柱子折线,点击“税率”按钮,显示税率柱子,之前的两柱子折线消失 回答: <!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8…...
视频里的音频怎么提取出来成单独文件?音频提取照着这些方法做
在数字时代,视频与音频的分离与重组已成为日常需求之一。无论是出于制作背景音乐、保存讲座内容,还是编辑播客素材,提取视频中的音频并将其保存为单独文件都显得尤为重要。视频里的音频怎么提取出来成单独文件?本文将详细介绍几种…...
Excel——宏教程(精简版)
一、宏的简介 1、什么是宏? Excel宏是一种自动化工具,它允许用户录制一系列操作并将其转换为VBA(Visual Basic for Applications)代码。这样,用户可以在需要时执行这些操作,以自动化Excel任务。 2、宏的优点 我们可以利用宏来…...
C++中的std::tuple和std::pair
在C标准库中,std::tuple和std::pair是两种极具实用性的数据结构,它们都具备存储多个元素的功能,但各自有其独特的适用环境和特性。本文旨在深入探讨这两者之间的区别,并阐述在不同应用场景下应如何合理选择使用。 一、基本概念 s…...
引力搜索算法
引力搜索算法过程,包括了初始化、适应度评估、质量计算、加速度计算、更新速度和位置的一些步骤。 import numpy as np import random as rd from math import exp, sqrt import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotli…...
【时间之外】IT人求职和创业应知【35】-RTE三进宫
目录 新闻一:京东工业发布11.11战报,多项倍增数据体现工业经济信心提升 新闻二:阿里云100万核算力支撑天猫双11,弹性计算规模刷新纪录 新闻三:声网CEO赵斌:RTE将成为生成式AI时代AI Infra的关键部分 认知…...
Linux的目录结构
/ ├── bin # Binary - 存放用户可以直接使用的基本二进制可执行文件 ├── sbin # System Binaries - 存放系统管理员专用的二进制可执行文件 ├── usr # Unix System Resources - 存放用户使用的软件和库文件 │ ├── bin # Binary - 用户级应用程序…...
python: generator IDAL and DAL using sql server 2019
其它数据库也是一样的思维方式 create IDAL # encoding: utf-8 # 版权所有 2024 ©涂聚文有限公司 # 许可信息查看:言語成了邀功盡責的功臣,還需要行爲每日來值班嗎 # 描述: # Author : geovindu,Geovin Du 涂聚文. # IDE : P…...
命令执行简单
前言:小迪安全2022第一节反弹shell,小迪用的是两台都是云服务器,没有服务器可以在自己的主机上搭建也是可以的,主机上搭两个网站 思路:生成一个木马文件,下载到本机,然后利用本机上传到目标主机…...
【一句话经验】亚马逊云EC2 ubuntu24.04.1开启ROOT登录Permission denied (publickey)
按照常规的方法SSH登录会一直报错: Permission denied (publickey) 因为亚马逊云的默认配置不是在/etc/ssh/sshd_config,而是在引入的文件里了,所以在instance控制台输入这行命令来解除登录限制: sudo sed -i s/^PasswordAuthe…...
百度智能云千帆大模型平台引领企业创新增长
本文整理自百度世界大会 2024——「智能跃迁 产业加速」论坛的同名演讲。 更多大会演讲内容,请访问: https://baiduworld.baidu.com 首先,跟大家分享一张图,这个是我们目前大模型应用落地的场景分布。可以看到,大模型…...
【Linux】深入理解GCC/G++编译流程及库文件管理
目录 1.背景知识 2.gcc/g如何完成编译 (1) 预处理(进行宏替换) (2) 编译(生成汇编) (3) 汇编(生成机器可识别代码) (4) 链接(生成可执行文件或库文件) (5) 总结 (6) 函数库 …...
【Unity基础】对比Unity中两种粒子系统
在Unity中,Particle System和Visual Effect Graph (VFX) 都是用于创建粒子效果的工具,但它们的设计目标、使用场景和功能特点有所不同。以下是详细对比: 1. Particle System 特点 传统粒子系统,Unity自带的模块化粒子特效工具。…...
琐碎笔记——pytest实现前置、后置、参数化、跳过用例执行以及重试
pytest的fixture中文介绍可参考(不过文档稍微有点老): https://www.osgeo.cn/pytest/fixture.html#what-fixtures-are pytest各个作用域的fixture scope “function” 可作用于每个用例 fixture使用的声明放在类定义前面,类中的…...
C# 深层副本与浅层副本 深拷贝与浅拷贝
C# 深层副本与浅层副本 数据复制是编程中的重要任务。 对象是 OOP 中的复合数据类型。 对象中的成员字段可以按值或按引用存储。 可以以两种方式执行复制。 浅表副本将所有值和引用复制到新实例中。 引用所指向的数据不会被复制; 仅指针被复制。 新的引用指向原始…...
CH06_Lambda表达式
第6章:Lambda表达式 本章目标 为什么要学习C#编程语言 了解C#相关常识 C#开发工具Visual Studio安装 掌握C#程序的开发步骤 掌握C#的注释 掌握C#的常用转义符 本章内容 lambda表达式演变史 C# 匿名函数的演变历史可以追溯到 C# 语言的不同版本,…...
大模型本地部署实践:Ollama+Open-WebUI(MacOS)
目录 什么是Ollama Ollama安装 对话界面可视化?Open-WebUI! 安装Open-WebUI 什么是Ollama Ollama是一个为简化大语言模型本地部署与交互的开源框架。它提供了用户友好的接口,帮助开发者和模型爱好者在没有依赖外部API的基础上高效地运行、…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
QT开发技术【ffmpeg + QAudioOutput】音乐播放器
一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下,音视频内容犹如璀璨繁星,点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频,到在线课堂中知识渊博的专家授课,再到影视平台上扣人心弦的高清大片,音…...
JS红宝书笔记 - 3.3 变量
要定义变量,可以使用var操作符,后跟变量名 ES实现变量初始化,因此可以同时定义变量并设置它的值 使用var操作符定义的变量会成为包含它的函数的局部变量。 在函数内定义变量时省略var操作符,可以创建一个全局变量 如果需要定义…...
MeshGPT 笔记
[2311.15475] MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers https://library.scholarcy.com/try 真正意义上的AI生成三维模型MESHGPT来袭!_哔哩哔哩_bilibili GitHub - lucidrains/meshgpt-pytorch: Implementation of MeshGPT, SOTA Me…...
