【LLM训练系列02】如何找到一个大模型Lora的target_modules
方法1:观察attention中的线性层
import numpy as np
import pandas as pd
from peft import PeftModel
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel, BitsAndBytesConfig
from typing import List
from tqdm.auto import tqdm
from sentence_transformers import SentenceTransformer
import os
os.environ['CUDA_VISIBLE_DEVICES']='1,2'
os.environ["TOKENIZERS_PARALLELISM"] = "false"model_path ="/home/jovyan/codes/llms/Qwen2.5-14B-Instruct"
base_model = AutoModel.from_pretrained(model_path, device_map='cuda:0',trust_remote_code=True)
打印attention模型层的名字
for name, module in base_model.named_modules():if 'attn' in name or 'attention' in name: # Common attention module namesprint(name)for sub_name, sub_module in module.named_modules(): # Check sub-modules within attentionprint(f" - {sub_name}")

方法2:通过bitsandbytes量化查找线性层
import bitsandbytes as bnb
def find_all_linear_names(model):lora_module_names = set()for name, module in model.named_modules():if isinstance(module, bnb.nn.Linear4bit):names = name.split(".")# model-specificlora_module_names.add(names[0] if len(names) == 1 else names[-1])if "lm_head" in lora_module_names: # needed for 16-bitlora_module_names.remove("lm_head")return list(lora_module_names)
加载模型
bnb_config = BitsAndBytesConfig(load_in_4bit=True,bnb_4bit_use_double_quant=True,bnb_4bit_quant_type="nf4",bnb_4bit_compute_dtype=torch.bfloat16)
base_model = AutoModel.from_pretrained(model_path,quantization_config=bnb_config,device_map="auto")
查找Lora的目标层
find_all_linear_names(base_model)

还有个函数,一样的原理
def find_target_modules(model):# Initialize a Set to Store Unique Layersunique_layers = set()# Iterate Over All Named Modules in the Modelfor name, module in model.named_modules():# Check if the Module Type Contains 'Linear4bit'if "Linear4bit" in str(type(module)):# Extract the Type of the Layerlayer_type = name.split('.')[-1]# Add the Layer Type to the Set of Unique Layersunique_layers.add(layer_type)# Return the Set of Unique Layers Converted to a Listreturn list(unique_layers)find_target_modules(base_model)

方法3:通过分析开源框架的源码swift
代码地址
from collections import OrderedDict
from dataclasses import dataclass, field
from typing import List, Union@dataclass
class ModelKeys:model_type: str = Nonemodule_list: str = Noneembedding: str = Nonemlp: str = Nonedown_proj: str = Noneattention: str = Noneo_proj: str = Noneq_proj: str = Nonek_proj: str = Nonev_proj: str = Noneqkv_proj: str = Noneqk_proj: str = Noneqa_proj: str = Noneqb_proj: str = Nonekva_proj: str = Nonekvb_proj: str = Noneoutput: str = None@dataclass
class MultiModelKeys(ModelKeys):language_model: Union[List[str], str] = field(default_factory=list)connector: Union[List[str], str] = field(default_factory=list)vision_tower: Union[List[str], str] = field(default_factory=list)generator: Union[List[str], str] = field(default_factory=list)def __post_init__(self):# compatfor key in ['language_model', 'connector', 'vision_tower', 'generator']:v = getattr(self, key)if isinstance(v, str):setattr(self, key, [v])if v is None:setattr(self, key, [])LLAMA_KEYS = ModelKeys(module_list='model.layers',mlp='model.layers.{}.mlp',down_proj='model.layers.{}.mlp.down_proj',attention='model.layers.{}.self_attn',o_proj='model.layers.{}.self_attn.o_proj',q_proj='model.layers.{}.self_attn.q_proj',k_proj='model.layers.{}.self_attn.k_proj',v_proj='model.layers.{}.self_attn.v_proj',embedding='model.embed_tokens',output='lm_head',
)INTERNLM2_KEYS = ModelKeys(module_list='model.layers',mlp='model.layers.{}.feed_forward',down_proj='model.layers.{}.feed_forward.w2',attention='model.layers.{}.attention',o_proj='model.layers.{}.attention.wo',qkv_proj='model.layers.{}.attention.wqkv',embedding='model.tok_embeddings',output='output',
)CHATGLM_KEYS = ModelKeys(module_list='transformer.encoder.layers',mlp='transformer.encoder.layers.{}.mlp',down_proj='transformer.encoder.layers.{}.mlp.dense_4h_to_h',attention='transformer.encoder.layers.{}.self_attention',o_proj='transformer.encoder.layers.{}.self_attention.dense',qkv_proj='transformer.encoder.layers.{}.self_attention.query_key_value',embedding='transformer.embedding',output='transformer.output_layer',
)BAICHUAN_KEYS = ModelKeys(module_list='model.layers',mlp='model.layers.{}.mlp',down_proj='model.layers.{}.mlp.down_proj',attention='model.layers.{}.self_attn',qkv_proj='model.layers.{}.self_attn.W_pack',embedding='model.embed_tokens',output='lm_head',
)YUAN_KEYS = ModelKeys(module_list='model.layers',mlp='model.layers.{}.mlp',down_proj='model.layers.{}.mlp.down_proj',attention='model.layers.{}.self_attn',qk_proj='model.layers.{}.self_attn.qk_proj',o_proj='model.layers.{}.self_attn.o_proj',q_proj='model.layers.{}.self_attn.q_proj',k_proj='model.layers.{}.self_attn.k_proj',v_proj='model.layers.{}.self_attn.v_proj',embedding='model.embed_tokens',output='lm_head',
)CODEFUSE_KEYS = ModelKeys(module_list='gpt_neox.layers',mlp='gpt_neox.layers.{}.mlp',down_proj='gpt_neox.layers.{}.mlp.dense_4h_to_h',attention='gpt_neox.layers.{}.attention',o_proj='gpt_neox.layers.{}.attention.dense',qkv_proj='gpt_neox.layers.{}.attention.query_key_value',embedding='gpt_neox.embed_in',output='gpt_neox.embed_out',
)PHI2_KEYS = ModelKeys(module_list='transformer.h',mlp='transformer.h.{}.mlp',down_proj='transformer.h.{}.mlp.c_proj',attention='transformer.h.{}.mixer',o_proj='transformer.h.{}.mixer.out_proj',qkv_proj='transformer.h.{}.mixer.Wqkv',embedding='transformer.embd',output='lm_head',
)QWEN_KEYS = ModelKeys(module_list='transformer.h',mlp='transformer.h.{}.mlp',down_proj='transformer.h.{}.mlp.c_proj',attention='transformer.h.{}.attn',o_proj='transformer.h.{}.attn.c_proj',qkv_proj='transformer.h.{}.attn.c_attn',embedding='transformer.wte',output='lm_head',
)PHI3_KEYS = ModelKeys(module_list='model.layers',mlp='model.layers.{}.mlp',down_proj='model.layers.{}.mlp.down_proj',attention='model.layers.{}.self_attn',o_proj='model.layers.{}.self_attn.o_proj',qkv_proj='model.layers.{}.self_attn.qkv_proj',embedding='model.embed_tokens',output='lm_head',
)PHI3_SMALL_KEYS = ModelKeys(module_list='model.layers',mlp='model.layers.{}.mlp',down_proj='model.layers.{}.mlp.down_proj',attention='model.layers.{}.self_attn',o_proj='model.layers.{}.self_attn.dense',qkv_proj='model.layers.{}.self_attn.query_key_value',embedding='model.embed_tokens',output='lm_head',
)DEEPSEEK_V2_KEYS = ModelKeys(module_list='model.layers',mlp='model.layers.{}.mlp',down_proj='model.layers.{}.mlp.down_proj',attention='model.layers.{}.self_attn',o_proj='model.layers.{}.self_attn.o_proj',qa_proj='model.layers.{}.self_attn.q_a_proj',qb_proj='model.layers.{}.self_attn.q_b_proj',kva_proj='model.layers.{}.self_attn.kv_a_proj_with_mqa',kvb_proj='model.layers.{}.self_attn.kv_b_proj',embedding='model.embed_tokens',output='lm_head',
)
我的博客即将同步至腾讯云开发者社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan?invite_code=3hiaca88ulogc
相关文章:
【LLM训练系列02】如何找到一个大模型Lora的target_modules
方法1:观察attention中的线性层 import numpy as np import pandas as pd from peft import PeftModel import torch import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel, BitsAndBytesConfig from typ…...
uni-app快速入门(八)--常用内置组件(上)
uni-app提供了一套基础组件,类似HTML里的标签元素,不推荐在uni-app中使用使用div等HTML标签。在uni-app中,对应<div>的标签是view,对应<span>的是text,对应<a>的是navigator,常用uni-app…...
基于Amazon Bedrock:一站式多模态数据处理新体验
目录 引言 关于Amazon Bedrock 基础模型体验 1、进入环境 2、发现模型及快速体验 3、打开 Amazon Bedrock 控制台 4、通过 Playgrounds 体验模型 (1)文本生成 (2)图片生成 关于资源清理 结束语 引言 在云计算和人工智能…...
FAX动作文件优化脚本(MAX清理多余关键帧插件)
大较好,为大家介绍一个节省FBX容量的插件!只保留有用的动画轴向,其他不参与动画运动的清除! 一.插件目的:: 1.我们使用的U3D引擎产生的游戏资源包容量太大,故全方位优化动画资源; 2.在max曲线编辑器内,点取轴向太过麻烦,费事,直观清除帧大大提高效率。 如: 二:…...
Chapter 2 - 16. Understanding Congestion in Fibre Channel Fabrics
Transforming an I/O Operation to FC frames A read or write I/O operation (Figure 2-28) between an initiator and a target undergoes a series of transformations before being transmitted on a Fibre Channel link. 启动程序和目标程序之间的读取或写入 I/O 操作(图…...
mysql数据库(六)pymysql、视图、触发器、存储过程、函数、流程控制、数据库连接池
pymysql、视图、触发器、存储过程、函数、流程控制、数据库连接池 文章目录 pymysql、视图、触发器、存储过程、函数、流程控制、数据库连接池一、pymysql二、视图三、触发器四、存储过程五、函数六、流程控制七、数据库连接池 一、pymysql 可以使用pip install pymysql安装py…...
RFdiffusion EuclideanDiffuser类解读
EuclideanDiffuser 是 RFdiffusion 中的一个关键类,专门设计用于对**三维空间中的点(如蛋白质的原子坐标)**进行扩散处理。它通过逐步向这些点添加噪音来实现扩散过程,从而为扩散模型提供输入数据,并通过逆扩散还原这些数据。 get_beta_schedule函数源代码 def get_beta…...
Flutter实现气泡提示框学习
前置知识点学习 GlobalKey GlobalKey 是 Flutter 中一个非常重要的概念,它用于唯一标识 widget 树中的特定 widget,并提供对该 widget 的访问。这在需要跨越 widget 树边界进行交互或在 widget 树重建时保持状态时尤其有用。 GlobalKey 的作用 唯一标…...
vue3 路由守卫
在Vue 3中,路由守卫是一种控制和管理路由跳转的机制。它允许你在执行导航前后进行一些逻辑处理,比如权限验证、数据预取等,从而增强应用的安全性和效率。路由守卫分为几种不同的类型,每种类型的守卫都有其特定的应用场景。 其实路…...
【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线.
操作环境: MATLAB 2022a 1、算法描述 北方苍鹰优化算法(Northern Goshawk Optimization,简称NGO)是一种新兴的智能优化算法,灵感来源于北方苍鹰的捕猎行为。北方苍鹰是一种敏捷且高效的猛禽,广泛分布于北…...
如何控制自己玩手机的时间?两台苹果手机帮助自律
对一些人来说,被智能手机“绑架”是一件心甘情愿的事,和它相处的一天中,不必面对现实的压力,它就像个“舒适区”。这是因为在使用手机的过程中,应用程序(尤其是游戏和社交媒体应用)会不断刺激大…...
【java-Neo4j 5开发入门篇】-最新Java开发Neo4j
系列文章目录 前言 上一篇文章讲解了Neo4j的基本使用,本篇文章对Java操作Neo4j进行入门级别的阐述,方便读者快速上手对Neo4j的开发。 一、开发环境与代码 1.docker 部署Neo4j #这里使用docker部署Neo4j,需要镜像加速的需要自行配置 docker run --name…...
Python的3D可视化库 - vedo (1)简介和模块功能概览
文章目录 1. vedo和它支持的功能简介1.1 安装vedo1.2 命令行接口1.3 导出3D文件1.4 文件格式转换 2. vedo模块功能概览2.1 绘制和渲染visual 管理可视化、对象及其属性的显示的基类plotter 3D渲染colors 定义和显示颜色dolfin FEniCS/Dolfin库的支持 2.2 图形数据管理mesh 多边…...
全面解析:HTML页面的加载全过程(一)--输入URL地址,与服务器建立连接
用户输入URL地址,与服务器建立连接 用户在浏览器地址栏输入一个URL 浏览器开始执行以下三步操作操作:url解析、DNS查询、TCP连接 第一步:URL解析 什么是URL? URL(Uniform Resource Locator,统一资源定位符)是互联网…...
elasticsearch的倒排索引是什么?
大家好,我是锋哥。今天分享关于【elasticsearch的倒排索引是什么?】面试题。希望对大家有帮助; elasticsearch的倒排索引是什么? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 倒排索引(Inverted Index&a…...
Ubuntu VNC Session启动chromium和firefox报错
问题描述 VNC客户端连接到Ubuntu Server后,启动chromium和firefox时报错: $ chromium [348564:348564:1117/102143.085649:ERROR:ozone_platform_x11.cc(244)] Missing X server or $DISPLAY [348564:348564:1117/102143.085732:ERROR:env.cc(258)] Th…...
【Tealscale + Headscale + 自建服务器】异地组网笔记
文章目录 效果为什么要用 Headscale云服务器安装 Headscale配置 config.yaml创建反向代理搭建管理 UI授权管理 UI添加互联设备参考 效果 首先是连接情况,双端都连接上自建的 Headscale, 手机使用移动流量,测试一下 ping 值 再试试进入游戏 可…...
C++ 编程基础(8)模版 | 8.2、函数模版
文章目录 一、函数模版1、声明与定义2、模版参数3、模板的实例化3.1、隐式实例化3.2、显示实例化 4、模版的特化5、注意事项6、总结 前言: C 函数模板是一种强大的特性,它允许程序员编写与类型无关的代码。通过使用模板,函数或类可以处理不同…...
Android Studio音频视频播放器课程设计
这个项目适合刚刚学习Android studio的初学者,实现音视频的基本播放功能,各项功能的页面都做的比较简单,特别适用于初学者,其特点在于本项目抛开了各种花里胡哨的制作,以最接近初学者的样式画面呈现,完全不…...
速盾:CDN是否支持屏蔽IP?
CDN(内容分发网络)是一种用于提高网站性能和可靠性的技术,通过将内容分发到距离终端用户更近的节点,减少了数据传输的延迟并提高了用户体验。在CDN中,屏蔽IP是一项重要的功能,可以帮助网站屏蔽无效或恶意请…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
Spring Security 认证流程——补充
一、认证流程概述 Spring Security 的认证流程基于 过滤器链(Filter Chain),核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤: 用户提交登录请求拦…...
