【机器学习】- L1L2 正则化操作
目录
- 0.引言
- 1.正则化的基本思想
- 2.L1 正则化
- 3.L2 正则化
- 4.L1 与 L2 正则化的比较
- 5.应用:控制模型复杂度
- 6.超参数 λ \lambda λ 的选择
- 7.总结
0.引言
在机器学习中,正则化是一种通过约束模型参数来控制模型复杂度的技术。它可以有效减少过拟合,提高模型的泛化能力。常见的正则化方法包括 L1 正则化 和 L2 正则化。
1.正则化的基本思想
在训练模型时,我们的目标是最小化损失函数。正则化通过在损失函数中加入一个正则化项,对模型参数施加约束,从而避免过于复杂的模型。
带有正则化的损失函数一般形式为:
损失函数 = 数据误差 + λ ⋅ 正则化项 \text{损失函数} = \text{数据误差} + \lambda \cdot \text{正则化项} 损失函数=数据误差+λ⋅正则化项
其中:
- 数据误差:如均方误差 (MSE) 或交叉熵损失。
- 正则化项:对模型参数的约束,如 L 1 L1 L1 或 L 2 L2 L2。
- λ \lambda λ:正则化强度(超参数),控制正则化项的权重。
2.L1 正则化
-
定义
L1 正则化的正则化项是模型参数的绝对值之和:R ( w ) = ∥ w ∥ 1 = ∑ i = 1 n ∣ w i ∣ R(\boldsymbol{w}) = \|\boldsymbol{w}\|_1 = \sum_{i=1}^n |w_i| R(w)=∥w∥1=i=1∑n∣wi∣
L1 正则化后的损失函数为:
L = 数据误差 + λ ∑ i = 1 n ∣ w i ∣ L = \text{数据误差} + \lambda \sum_{i=1}^n |w_i| L=数据误差+λi=1∑n∣wi∣
-
特性
- 通过惩罚参数的绝对值,鼓励某些参数变为零。
- 适合特征选择,因为它会自动剔除不重要的特征(参数为零)。
-
适用场景
- 特征数量较多,且希望通过稀疏性来筛选重要特征(如高维数据)。
3.L2 正则化
-
定义
L2 正则化的正则化项是模型参数的平方和:R ( w ) = ∥ w ∥ 2 2 = ∑ i = 1 n w i 2 R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2 = \sum_{i=1}^n w_i^2 R(w)=∥w∥22=i=1∑nwi2
L2 正则化后的损失函数为:
L = 数据误差 + λ ∑ i = 1 n w i 2 L = \text{数据误差} + \lambda \sum_{i=1}^n w_i^2 L=数据误差+λi=1∑nwi2
-
特性
- 通过惩罚参数的平方值,鼓励模型参数较小但不为零。
- 与 L1 不同,它不会让参数变为完全零,而是接近零。
-
适用场景
- 当希望模型平滑,避免过度拟合时(如线性回归)。
4.L1 与 L2 正则化的比较
| 特性 | L1 正则化 | L2 正则化 |
|---|---|---|
| 正则化项 | ∣ w ∣ 1 = ∑ w i |\boldsymbol{w}|_1 = \sum w_i ∣w∣1=∑wi | ∣ w ∣ 2 2 = ∑ w i 2 |\boldsymbol{w}|_2^2 = \sum w_i^2 ∣w∣22=∑wi2 |
| 参数特性 | 产生稀疏解(参数可能为零) | 参数更平滑(接近零但不为零) |
| 特征选择 | 可以选择特征 | 不适用于特征选择 |
| 计算效率 | 非凸优化,计算复杂 | 凸优化,计算简单 |
| 适用场景 | 高维稀疏数据 | 常规数据,避免过拟合 |
5.应用:控制模型复杂度
-
减少过拟合
- 正则化通过限制参数的幅度,避免模型过度拟合训练数据中的噪声。
-
提高泛化能力
- 限制模型复杂度,使其在新数据上表现更稳定。
-
特征选择
- L1 正则化的稀疏性帮助自动选择重要特征。
6.超参数 λ \lambda λ 的选择
正则化强度 λ \lambda λ 是一个超参数,其值需要通过交叉验证或网格搜索来选择。
- λ \lambda λ 较小:
- 正则化效果弱,模型复杂度高,容易过拟合。
- λ \lambda λ 较大:
- 正则化效果强,模型复杂度低,可能导致欠拟合。
7.总结
正则化是控制模型复杂度的重要方法,通过引入 L1 或 L2 正则化项,既可以提高模型的泛化能力,又可以在某些场景下实现特征选择。合理设置正则化强度 λ \lambda λ,能够帮助模型在偏差与方差之间取得良好的平衡。
相关文章:
【机器学习】- L1L2 正则化操作
目录 0.引言1.正则化的基本思想2.L1 正则化3.L2 正则化4.L1 与 L2 正则化的比较5.应用:控制模型复杂度6.超参数 λ \lambda λ 的选择7.总结 0.引言 在机器学习中,正则化是一种通过约束模型参数来控制模型复杂度的技术。它可以有效减少过拟合ÿ…...
Logback实战指南:基础知识、实战应用及最佳实践全攻略
背景 在Java系统实现过程中,我们不可避免地会借助大量开源功能组件。然而,这些组件往往功能丰富且体系庞大,官方文档常常详尽至数百页。而在实际项目中,我们可能仅需使用其中的一小部分功能,这就造成了一个挑战&#…...
基于python的机器学习(三)—— 关联规则与推荐算法
目录 一、关联规则挖掘 1.1 基本概念 1.2 Apriori算法 1.2.1 Apriori算法的原理 1.2.2 Apriori算法的实例 1.2.3 Apriori算法的程序实现(efficient-apriori模块) 1.3 FP-Growth算法 1.3.1 FP-Growth算法的原理 1.3.2 FP-Growth算法的实例 二、…...
【大模型】LLaMA: Open and Efficient Foundation Language Models
链接:https://arxiv.org/pdf/2302.13971 论文:LLaMA: Open and Efficient Foundation Language Models Introduction 规模和效果 7B to 65B,LLaMA-13B 超过 GPT-3 (175B)Motivation 如何最好地缩放特定训练计算预算的数据集和模型大小&…...
模拟器多开限制ip,如何设置单窗口单ip,每个窗口ip不同
很多手游多开玩家都是利用安卓模拟器实现手游多开,但是很多手游会限制ip,导致多开之后封号等问题,模拟器本身没有更换IP的功能,就需要通过第三方软件来实现 安卓模拟器概述 雷电模拟器、夜神模拟器、mum模拟器等都是目前市场上比较…...
hive的存储格式
1) 四种存储格式 hive的存储格式分为两大类:一类纯文本文件,一类是二进制文件存储。 Hive支持的存储数据的格式主要有:TEXTFILE、SEQUENCEFILE、ORC、PARQUET 第一类:纯文本文件存储 textfile: 纯文本文件存储格式…...
鸿蒙学习高效开发与测试-应用程序框架(3)
文章目录 1、应用程序框架1、规范化后台进程管理2、原生支持分布式3、支持多设备的统一窗口管理4、 组件共享及面向对象5、逻辑与界面解耦6、灵活扩展机制2、HarmonyOS SDK1、 开放能力 Kit2、开放能力的检索和使用3、 方舟工具链4、前端编译器架构1、应用程序框架 应 用 程 序…...
什么命令可以查看数据库中表的结构
1. MySQL 查看表结构 sql 复制代码 DESCRIBE 表名; 或者: sql 复制代码 SHOW COLUMNS FROM 表名; 更详细的表信息 sql 复制代码 SHOW CREATE TABLE 表名; 2. PostgreSQL 查看表结构 sql 复制代码 \d 表名 列出表的字段及类型 sql 复制代码 SELECT column_name, da…...
django基于python 语言的酒店推荐系统
摘 要 酒店推荐系统旨在提供一个全面酒店推荐在线平台,该系统允许用户浏览不同的客房类型,并根据个人偏好和需求推荐合适的酒店客房。用户可以便捷地进行客房预订,并在抵达后简化入住登记流程。为了确保连续的住宿体验,系统还提供…...
【深度学习|onnx】往onnx中写入训练的超参或者类别等信息,并在推理时读取
1、往onnx中写入 在训练完毕之后,我们先使用torch.onnx.export() 导出onnx模型,然后我们再使用以下代码来往metadata中写入信息: # Metadatad {# stride: int(max(model.stride)),names: model.names,mean : [0,0,0],std : [1,1,1],normali…...
WebSocket详解、WebSocket入门案例
目录 1.1 WebSocket介绍 http协议: webSocket协议: 1.2WebSocket协议: 1.3客户端(浏览器)实现 1.3.2 WebSocket对象的相关事宜: 1.3.3 WebSOcket方法 1.4 服务端实现 服务端如何接收客户端发送的请…...
05_Spring JdbcTemplate
在继续了解Spring的核心知识前,我们先看看Spring的一个模板类JdbcTemplate,它是一个JDBC的模板类,用来简化JDBC的操作。 接下来以实际来进行说明 一、实例环境准备 数据库及表准备 我们在本地mysql中新增一个数据库test,并新增一张数据表:user create database if not…...
Bug:引入Feign后触发了2次、4次ContextRefreshedEvent
Bug:引入Feign后发现监控onApplication中ContextRefreshedEvent事件触发了2次或者4次。 【原理】在Spring的文档注释中提示到: Event raised when an {code ApplicationContext} gets initialized or refreshed.即当 ApplicationContext 进行初始化或者刷…...
最新VSCode保姆级安装教程(附安装包)
文章目录 一、VSCode介绍 二、VSCode下载 下载链接:https://pan.quark.cn/s/19a303ff81fc 三、VSCode安装 1.解压安装文件:双击打开并安装VSCode 2.勾选我同意协议:然后点击下一步 3.选择目标位置:点击浏览 4.选择D盘安装&…...
layui 表格点击编辑感觉很好用,实现方法如下
1. 在 HTML 页面中引入 layui 的相关资源文件:html <link rel"stylesheet" href"https://cdn.staticfile.org/layui/2.5.6/css/layui.css"> <script src"https://cdn.staticfile.org/layui/2.5.6/layui.js"></script&…...
三十一、构建完善微服务——API 网关
一、API 网关基础 系统拆分为微服务后,内部的微服务之间是互联互通的,相互之间的访问都是点对点的。如果外部系统想调用系统的某个功能,也采取点对点的方式,则外部系统会非常“头大”。因为在外部系统看来,它不需要也没…...
非对称之美(贪心)
非对称之美(贪心) import java.util.*; public class Main{public static void main(String[] arg) {Scanner in new Scanner(System.in);char[] ch in.next().toCharArray(); int n ch.length; int flag 1;for(int i 1; i < n; i) {if(ch[i] ! ch[0]) {flag …...
详细教程-Linux上安装单机版的Hadoop
1、上传Hadoop安装包至linux并解压 tar -zxvf hadoop-2.6.0-cdh5.15.2.tar.gz 安装包: 链接:https://pan.baidu.com/s/1u59OLTJctKmm9YVWr_F-Cg 提取码:0pfj 2、配置免密码登录 生成秘钥: ssh-keygen -t rsa -P 将秘钥写入认…...
C#桌面应用制作计算器进阶版01
基于C#桌面应用制作计算器做出了少量改动,其主要改动为新增加了一个label控件,使其每一步运算结果由label2展示出来,而当点击“”时,最终运算结果将由label1展示出来,此时label清空。 修改后运行效果 修改后全篇代码 …...
[开源] 告别黑苹果!用docker安装MacOS体验苹果系统
没用过苹果电脑的朋友可能会对苹果系统好奇,有人甚至会为了尝鲜MacOS去折腾黑苹果。如果你只是想体验一下MacOS,这里有个更简单更优雅的解决方案,用docker安装MacOS来体验苹果系统。 一、项目简介 项目描述 Docker 容器内的 OSX(…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
