当前位置: 首页 > news >正文

HBase Flink操作

Apache Flink 是一个开源的分布式流处理框架,能够高效地处理和分析实时数据流以及批数据。HBase 是一个分布式、面向列的开源数据库,是 Hadoop 项目的子项目,适合非结构化数据结构的存储,并提供实时读写能力。以下是关于 Flink 对 HBase 的操作原理以及流处理和批处理的示例:

Flink 对 HBase 的操作原理

Flink 通过其丰富的 connectors 生态系统,可以方便地与 HBase 进行集成。操作原理主要基于以下几点:

  1. 连接器(Connector):Flink 提供了对 HBase 的连接器,允许 Flink 任务直接读写 HBase 表。这些连接器通常封装了 HBase 客户端的复杂性,使得 Flink 任务可以像操作普通数据源一样操作 HBase。
  2. 数据流模型:Flink 使用数据流模型来处理数据。在读取 HBase 数据时,Flink 会将数据从 HBase 表中拉取到 Flink 任务中,并转换为 Flink 的数据流。在写入 HBase 数据时,Flink 会将处理后的数据流写回到 HBase 表中。
  3. 并行处理:Flink 支持并行处理,可以处理大量的并发请求。当 Flink 任务与 HBase 进行交互时,可以利用 HBase 的分布式架构和并行处理能力,提高数据处理的吞吐量。

Flink可以通过其强大的数据处理能力,与HBase这样的分布式数据库进行交互。在Flink中,可以通过配置和编写相应的代码,实现对HBase的读写操作。

  1. 写操作:
    • 在Flink中,可以通过创建多个HTable客户端用于写操作,以提高写数据的吞吐量。
    • 可以通过设置HTable客户端的写缓存大小和自动刷新(AutoFlush)参数,来优化写性能。例如,关闭自动刷新可以批量写入数据到HBase,而不是每有一条数据就执行一次更新。
    • 可以通过调用HTable的put方法,将一个指定的row key记录写入HBase,或者通过调用put(List)方法批量写入多行记录。
  2. 读操作:
    • Flink可以从HBase中读取数据,通常是通过配置相应的Source连接器来实现的。
    • 读取的数据可以在Flink的流处理或批处理任务中进行进一步的处理和分析。

流处理示例

以下是一个简单的 Flink 流处理示例,演示如何从 Kafka 读取数据流,经过处理后写入 HBase:

// 引入必要的依赖和包
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.connector.hbase.FlinkHBaseOutputFormat;
import org.apache.flink.connector.hbase.HBaseConfigurationUtil;
import org.apache.flink.connector.hbase.HBaseConnectionOptions;
import org.apache.flink.connector.hbase.table.HBaseTableSchema;
import org.apache.flink.types.Row;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.util.Bytes;// 配置 Kafka 消费者
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "flink-consumer-group");
FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>("your-kafka-topic", new SimpleStringSchema(), properties);// 创建 Flink 执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 添加 Kafka 消费者到数据流
DataStream<String> stream = env.addSource(kafkaConsumer);// 对数据流进行处理(例如,解析 JSON 或进行字符串处理)
DataStream<Row> processedStream = stream.map(data -> {// 假设数据是一个 JSON 字符串,这里进行简单的解析// 实际上应该使用 JSON 解析库来解析String[] parts = data.split(",");return Row.of(parts[0], parts[1], parts[2]); // 假设有三个字段
});// 配置 HBase 连接和表信息
Configuration hbaseConf = HBaseConfiguration.create();
hbaseConf.set("hbase.zookeeper.quorum", "localhost");
hbaseConf.set("hbase.zookeeper.property.clientPort", "2181");HBaseConnectionOptions.HBaseConnectionOptionsBuilder connectionOptionsBuilder = new HBaseConnectionOptions.HBaseConnectionOptionsBuilder().withHBaseConfiguration(hbaseConf);HBaseTableSchema hbaseTableSchema = new HBaseTableSchema() {@Overridepublic String tableName() {return "your-hbase-table";}@Overridepublic String rowKeyField() {return "field0"; // 假设第一个字段是 row key}@Overridepublic TypeInformation<?>[] getFieldTypes() {// 返回字段的类型信息,这里应该是 Row 类型中的字段类型return new TypeInformation<?>[]{Types.STRING, Types.STRING, Types.STRING};}@Overridepublic TypeInformation<Row> getRowTypeInfo() {return Types.ROW(Types.STRING, Types.STRING, Types.STRING);}@Overridepublic void addFamilyField(String familyName, String... columnNames) {// 添加列族和列名信息this.addFamilyField("cf", "field1", "field2");}
};// 将处理后的数据流写入 HBase
processedStream.addSink(new FlinkHBaseOutputFormat<>(connectionOptionsBuilder.build(), hbaseTableSchema) {@Overrideprotected void writeRecord(Row row, Context context) throws IOException {Put put = new Put(Bytes.toBytes(row.getField(0).toString())); // 设置 row keyput.addColumn(Bytes.toBytes("cf"), Bytes.toBytes("field1"), Bytes.toBytes(row.getField(1).toString()));put.addColumn(Bytes.toBytes("cf"), Bytes.toBytes("field2"), Bytes.toBytes(row.getField(2).toString()));getBufferedMutator().mutate(put);}
});// 执行 Flink 任务
env.execute("Flink Kafka to HBase Stream Processing");

批处理示例

以下是一个简单的 Flink 批处理示例,演示如何从文件系统读取数据,经过处理后写入 HBase:

// 引入必要的依赖和包
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.connector.hbase.HBaseInputFormat;
import org.apache.flink.connector.hbase.HBaseOutputFormat;
import org.apache.flink.connector.hbase.table.HBaseTableSchema;
import org.apache.flink.types.Row;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.util.Bytes;// 创建 Flink 执行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();// 配置 HBase 连接和表信息
Configuration hbaseConf = HBaseConfiguration.create();
hbaseConf.set("hbase.zookeeper.quorum", "localhost");
hbaseConf.set("hbase.zookeeper.property.clientPort", "2181");// 从文件系统读取数据(例如 CSV 文件)
DataSet<String> text = env.readTextFile("path/to/your/input.csv");// 对数据进行处理(例如,解析 CSV 并转换为 Row 类型)
DataSet<Row> rows = text.map(new MapFunction<String, Row>() {@Overridepublic Row map(String value) throws Exception {String[] fields = value.split(",");return Row.of(fields[0], fields[1], fields[2]); // 假设有三个字段}
});// 配置 HBase 表的 schema
HBaseTableSchema hbaseTableSchema = new HBaseTableSchema() {@Overridepublic String tableName() {return "your-hbase-table";}@Overridepublic String rowKeyField() {return "field0"; // 假设第一个字段是 row key}@Overridepublic TypeInformation<?>[] getFieldTypes() {return new TypeInformation<?>[]{Types.STRING, Types.STRING, Types.STRING};}@Overridepublic TypeInformation<Row> getRowTypeInfo() {return Types.ROW(Types.STRING, Types.STRING, Types.STRING);}@Overridepublic void addFamilyField(String familyName, String... columnNames) {this.addFamilyField("cf", "field1", "field2");}
};// 将处理后的数据写入 HBase
rows.output(new HBaseOutputFormat<>(hbaseConf, hbaseTableSchema) {@Overrideprotected void writeRecord(Row row) throws IOException {Put put = new Put(Bytes.toBytes(row.getField(0).toString())); // 设置 row keyput.addColumn(Bytes.toBytes("cf"), Bytes.toBytes("field1"), Bytes.toBytes(row.getField(1).toString()));put.addColumn(Bytes.toBytes("cf"), Bytes.toBytes("field2"), Bytes.toBytes(row.getField(2).toString()));getBufferedMutator().mutate(put);}
});// 执行 Flink 任务
env.execute("Flink Batch Processing to HBase");

注意:上述代码仅作为示例,实际使用时可能需要根据具体需求进行调整,包括错误处理、性能优化等方面。同时,Flink 和 HBase 的版本兼容性也需要考虑。

Flink SQL流处理示例

Flink SQL允许用户使用SQL语句来处理和分析数据流。以下是一个简单的Flink SQL流处理示例,它展示了如何从一个Kafka主题中读取数据,通过SQL查询进行处理,然后将结果输出到另一个Kafka主题中。

-- 创建Kafka Source表
CREATE TABLE kafka_source (user_id STRING,item_id STRING,behavior STRING,ts TIMESTAMP(3),WATERMARK FOR ts AS ts - INTERVAL '5' SECOND
) WITH ('connector' = 'kafka','topic' = 'source_topic','properties.bootstrap.servers' = 'localhost:9092','format' = 'json','scan.startup.mode' = 'earliest-offset'
);-- 创建Kafka Sink表
CREATE TABLE kafka_sink (user_id STRING,item_count BIGINT
) WITH ('connector' = 'kafka','topic' = 'sink_topic','properties.bootstrap.servers' = 'localhost:9092','format' = 'json'
);-- 编写SQL查询语句,计算每个用户的点击次数,并将结果写入kafka_sink表
INSERT INTO kafka_sink
SELECT user_id, COUNT(item_id) AS item_count
FROM kafka_source
WHERE behavior = 'click'
GROUP BY user_id;

在这个示例中,首先创建了一个名为kafka_source的Kafka Source表,用于从Kafka主题中读取数据。然后,创建了一个名为kafka_sink的Kafka Sink表,用于将处理后的数据写入另一个Kafka主题中。最后,编写了一个SQL查询语句,用于计算每个用户的点击次数,并将结果写入kafka_sink表中。

Flink SQL批处理示例

除了流处理外,Flink SQL还支持批处理。以下是一个简单的Flink SQL批处理示例,它展示了如何从一个CSV文件中读取数据,通过SQL查询进行处理,然后将结果输出到另一个CSV文件中。

-- 创建Source表,用于从CSV文件中读取数据
CREATE TABLE csv_source (user_id INT,item_id INT,category STRING,sales DOUBLE
) WITH ('connector' = 'filesystem','path' = 'file:///path/to/input.csv','format' = 'csv'
);-- 创建Sink表,用于将处理后的数据写入CSV文件中
CREATE TABLE csv_sink (category STRING,total_sales DOUBLE
) WITH ('connector' = 'filesystem','path' = 'file:///path/to/output.csv','format' = 'csv'
);-- 编写SQL查询语句,计算每个类别的总销售额,并将结果写入csv_sink表
INSERT INTO csv_sink
SELECT category, SUM(sales) AS total_sales
FROM csv_source
GROUP BY category;

在这个示例中,首先创建了一个名为csv_source的Source表,用于从CSV文件中读取数据。然后,创建了一个名为csv_sink的Sink表,用于将处理后的数据写入另一个CSV文件中。最后,编写了一个SQL查询语句,用于计算每个类别的总销售额,并将结果写入csv_sink表中。

相关文章:

HBase Flink操作

Apache Flink 是一个开源的分布式流处理框架&#xff0c;能够高效地处理和分析实时数据流以及批数据。HBase 是一个分布式、面向列的开源数据库&#xff0c;是 Hadoop 项目的子项目&#xff0c;适合非结构化数据结构的存储&#xff0c;并提供实时读写能力。以下是关于 Flink 对…...

C# .Net Core通过StreamLoad向Doris写入CSV数据

以下代码可以只关注StreamLoad具体实现。 1.创建StreamLoad返回值Model public class StreamLoadResponse {public long TxnId { get; set; }public string Label { get; set; }public string Comment { get; set; }public string TwoPhaseCommit { get; set; }public string…...

React-自定义Hook与逻辑共享

#题引&#xff1a;我认为跟着官方文档学习不会走歪路 在 React 中&#xff0c;自定义 Hook 是一种复用逻辑的方式。自定义 Hook 是一个 JavaScript 函数&#xff0c;名称以 use 开头&#xff0c;可以调用其他的 Hook, 可以返回任意值。 创建自定义Hook 假设你正在开发一款重…...

蓝桥杯每日真题 - 第17天

题目&#xff1a;&#xff08;最大数字&#xff09; 题目描述&#xff08;13届 C&C B组D题&#xff09; 题目分析&#xff1a; 操作规则&#xff1a; 1号操作&#xff1a;将数字加1&#xff08;如果该数字为9&#xff0c;变为0&#xff09;。 2号操作&#xff1a;将数字…...

游戏开发实现简易实用的ui框架

游戏开发实现简易实用的ui框架 本文使用cocos引擎实现&#xff0c;框架代码本质上不依赖某一个引擎&#xff0c;稍作修改也能作为其他引擎的实现 1.1 UI管理框架的核心需求剖析 分层与类型管理 对不同类型UI需要进行分层管理。不同层级的UI需要有不同的父节点&#xff0c;保证渲…...

vue3的attr透传属性详解和使用法方式。以及在css样式的伪元素中实现

在 Vue 3 和 TypeScript 中&#xff0c;属性透传&#xff08;attr pass-through&#xff09;是指将组件的属性传递到其根元素或某个子元素中。这个概念在开发可复用的组件时非常有用&#xff0c;尤其是当你希望将父组件的属性动态地传递给子组件的某个 DOM 元素时。 在 Vue 3 …...

【仿真建模-MESA】框架简介

1. 简介 Mesa是一个基于Python3的开源项目&#xff0c;旨在提供一个现代、易用的多智能体仿真环境。它借鉴了NetLogo、Repast和MASON等多智能体仿真框架的优点&#xff0c;并结合Python语言的强大功能&#xff0c;为用户提供了丰富的建模和仿真工具。 《官方文档》 2. 核心组件…...

Linux环境基础开发工具的使用(yum、vim、gcc、g++、gdb、make/Makefile)

目录 Linux软件包管理器 - yum Linux下安装软件包的方式 认识yum 查找软件包 安装软件 如何实现本地机器和云服务器之间的文件互传 卸载软件 Linux编辑器 - vim vim的基本概念 vim下各模式的切换 批量化注释 vim的简单配置 Linux编译器 - gcc/g gcc/g的作用 gcc/g语…...

VSCode 间距太小

setting->font family 使用&#xff1a;Consolas, Courier New, monospace 字体...

【K8S系列】imagePullSecrets配置正确,但docker pull仍然失败,进一步排查详细步骤

如果 imagePullSecrets 配置正确,但在执行 docker pull 命令时仍然失败,可能存在以下几种原因。以下是详细的排查步骤和解决方案。 1. 检查 Docker 登录凭证 确保你使用的是与 imagePullSecrets 中相同的凭证进行 Docker 登录: 1.1 直接登录 在命令行中,执行以下命令: …...

【ARM Coresight OpenOCD 系列 5.1 -- OpenOCD 无法识别CPUID 问题: xxx is unrecognized】

请阅读【嵌入式开发学习必备专栏】 文章目录 OpenOCD 无法识别CPUID 问题ARM CPUIDCPUID 特性CPUID 寄存器字段OpenOCD 无法识别CPUID 问题 在使用OpenOCD 进行CPU debug的过程中有时会报出 无法识别CPUID的问题,本文将会介绍如何解决这个问题。首先我们来学习下什么是CPUID,…...

如何实现点击目录跳转到指定位置?【vue】

需求&#xff1a;实现目录点击跳转到指定位置&#xff0c;点击后直接定位到指定模块 效果&#xff1a; 实现方法&#xff1a; &#xff08;1&#xff09;a标签跳转 普通使用&#xff1a; <!DOCTYPE html> <html><head><title>a-Demo</title>&l…...

SQL 通配符

SQL 通配符 在SQL中&#xff0c;通配符是一种特殊字符&#xff0c;用于在LIKE子句中搜索数据。它们主要用于模式匹配&#xff0c;允许你搜索符合特定模式的值。SQL中的通配符通常用于SELECT、UPDATE和DELETE语句中&#xff0c;以增加查询的灵活性。本文将详细介绍SQL中常用的通…...

ubuntu显示管理器_显示导航栏

ubuntu文件管理器_显示导航栏 一、原始状态&#xff1a; 二、显示导航栏状态&#xff1a; 三、原始状态--->导航栏状态: 1、打开dconf编辑器&#xff0c;直接在搜索栏搜索 dconf-editor ------如果没有安装&#xff0c;直接按流程安装即可。 2、进入目录&#xff1a;org …...

黑芝麻嵌入式面试题及参考答案

请详细描述二叉树的深度优先搜索(dfs)流程。 深度优先搜索是一种用于遍历二叉树的重要算法,主要有先序遍历、中序遍历和后序遍历三种方式。 先序遍历的流程是,首先访问根节点,然后递归地遍历左子树,最后递归地遍历右子树。这就好比是在探索一个家族树,先拜访家族中的长辈…...

使用 PyTorch-BigGraph 构建和部署大规模图嵌入的完整教程

当涉及到图数据时&#xff0c;复杂性是不可避免的。无论是社交网络中的庞大互联关系、像 Freebase 这样的知识图谱&#xff0c;还是推荐引擎中海量的数据量&#xff0c;处理如此规模的图数据都充满挑战。 尤其是当目标是生成能够准确捕捉这些关系本质的嵌入表示时&#xff0c;…...

系统性能优化方法论详解:从理解系统到验证迭代

在当今的企业级和云计算环境中&#xff0c;系统性能优化已成为提升竞争力的关键因素。本文将对系统优化的步骤进行深入解析&#xff0c;帮助读者系统化地进行性能优化&#xff0c;从而显著提升系统的整体表现。 流程概述: 系统性能优化的流程可以分为以下几个关键步骤&#x…...

使用Tengine 对负载均衡进行状态检查(day028)

本篇文章对于在服务器已经安装了nginx,但却希望使用Tengine 的状态检查或其他功能时使用&#xff0c;不需要卸载服务器上的nginx,思路是使用干净服务器&#xff08;未安装过nginx&#xff09;通过编译安装Tengine&#xff0c;通过对./configure的配置&#xff0c;保证安装Tengi…...

网站推广实战案例:杭州翔胜科技有限公司如何为中小企业打开市场大门

以下是以杭州翔胜科技有限公司为例&#xff0c;解析其如何通过网站推广为中小企业打开市场大门的实战案例&#xff1a; 一、一站式网站推广方案 杭州翔胜科技有限公司提供一站式网站推广方案&#xff0c;该方案整合了多种推广手段&#xff0c;如搜索引擎优化&#xff08;SEO&a…...

视频修复技术和实时在线处理

什么是视频修复&#xff1f; 视频修复技术的目标是填补视频中的缺失部分&#xff0c;使视频内容连贯合理。这项技术在对象移除、视频修复和视频补全等领域有着广泛的应用。传统方法通常需要处理整个视频&#xff0c;导致处理速度慢&#xff0c;难以满足实时处理的需求。 技术发…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...