行列式的理解与计算:线性代数中的核心概念
开发领域:前端开发 | AI 应用 | Web3D | 元宇宙
技术栈:JavaScript、React、ThreeJs、WebGL、Go
经验经验:6 年+ 前端开发经验,专注于图形渲染和 AI 技术
开源项目:github 简智未来、数字孪生引擎、前端面试题
大家好!我是 [晓智],一位热爱探索新技术的前端开发者,在这里分享前端和 Web3D、AI 技术的干货与实战经验。如果你对技术有热情,欢迎关注我的文章,我们一起成长、进步!
行列式是线性代数中一个非常重要的概念,它广泛应用于矩阵计算、线性方程组求解、向量空间分析等领域。在这篇博客中,我们将探讨行列式的定义、几何意义、计算方法,并提供一个用 JavaScript 实现的行列式计算示例。
一、行列式的定义
**行列式(Determinant)**是一个标量值,用于描述一个方阵的特性,比如是否可逆或矩阵变换对空间的影响。
对于一个 ( n \times n ) 的方阵 ( A ),行列式记为:
[
\text{det}(A) \quad \text{或} \quad |A|
]
例如, ( 2 \times 2 ) 矩阵的行列式计算公式:
[
\text{det}
\begin{bmatrix}
a & b \
c & d
\end{bmatrix}
= ad - bc
]
对于 ( 3 \times 3 ) 矩阵:
[
\text{det}
\begin{bmatrix}
a & b & c \
d & e & f \
g & h & i
\end{bmatrix}
= a(ei - fh) - b(di - fg) + c(dh - eg)
]
二、行列式的几何意义
行列式的几何意义主要体现在以下两方面:
-
体积缩放因子:
行列式的绝对值表示矩阵变换对单位体积的放缩比例。例如,若矩阵 ( A ) 的行列式为 ( |A| = 6 ),则该矩阵将单位面积放大 6 倍。 -
方向:
行列式的正负值表示线性变换是否改变了坐标系的方向。- (|A| > 0):未翻转方向;
- (|A| < 0):翻转了方向(如镜像变换)。
三、行列式的性质
行列式具有以下性质:
- 交换任意两行(或列),行列式符号会改变;
- 行列式为零表示矩阵不可逆;
- 如果矩阵的某行(列)全为零,则行列式为零;
- 两行(或列)成比例,行列式为零;
- 行列式的值与矩阵的大小无关,但与矩阵的行和列的内容密切相关。
四、JavaScript 实现行列式计算
以下是一个递归实现任意阶矩阵行列式的 JavaScript 示例:
function determinant(matrix) {const n = matrix.length;// 检查是否为方阵if (!matrix.every(row => row.length === n)) {throw new Error("矩阵必须是方阵");}// 基础情况:1x1 矩阵if (n === 1) {return matrix[0][0];}// 基础情况:2x2 矩阵if (n === 2) {return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0];}// 递归计算行列式let det = 0;for (let col = 0; col < n; col++) {const subMatrix = matrix.slice(1).map(row => row.filter((_, j) => j !== col));det += matrix[0][col] * determinant(subMatrix) * (col % 2 === 0 ? 1 : -1);}return det;
}// 测试
const matrix = [[1, 2, 3],[0, 4, 5],[1, 0, 6],
];console.log("行列式的值是:", determinant(matrix)); // 输出: -22
五、行列式的实际应用
行列式在以下领域有重要应用:
- 线性方程组求解: 使用克拉默法则(Cramer’s Rule)。
- 判断矩阵是否可逆: 行列式为零表示矩阵不可逆。
- 几何变换: 矩阵对空间的拉伸或缩放影响。
相关文章:
行列式的理解与计算:线性代数中的核心概念
开发领域:前端开发 | AI 应用 | Web3D | 元宇宙 技术栈:JavaScript、React、ThreeJs、WebGL、Go 经验经验:6 年 前端开发经验,专注于图形渲染和 AI 技术 开源项目:github 简智未来、数字孪生引擎、前端面试题 大家好&a…...
按出生日期排序(结构体专题)
题目描述 送人玫瑰手有余香,小明希望自己能带给他人快乐,于是小明在每个好友生日的时候发去一份生日祝福。小明希望将自己的通讯录按好友的生日排序排序,这样就查看起来方便多了,也避免错过好友的生日。为了小明的美好愿望&#x…...
【C++】拆分详解 - 多态
文章目录 一、概念二、定义和实现1. 多态的构成条件2. 虚函数2.1 虚函数的重写/覆盖2.2 虚函数重写的两个例外 3. override 和 final关键字4. 重载/重写/隐藏的对比5. 例题 三、纯虚函数和抽象类四、多态的原理1. 虚函数表2. 实现原理3. 动态绑定和静态绑定 总结 一、概念 多态…...
Python世界:力扣题解875,珂珂爱吃香蕉,中等
Python世界:力扣题解875,珂珂爱吃香蕉,中等 任务背景思路分析代码实现坑点排查测试套件本文小结 任务背景 问题来自力扣题目875 Koko Eating Bananas,大意如下: Koko loves to eat bananas. There are n piles of bana…...
Java设计模式 —— Java七大设计原则详解
文章目录 前言一、单一职责原则1、概述2、案例演示 二、接口隔离原则1、概述2、案例演示 三、依赖倒转原则1、概述2、案例演示 四、里氏替换原则1、概述2、案例演示 五、开闭原则1、概述2、案例演示 六、迪米特法则1、概述2、案例演示 七、合成/聚合复用原则1、概述2、组合3、聚…...
SpringBoot学习记录(六)配置文件参数化
SpringBoot学习记录(六)配置文件参数化 一、参数提取到配置文件中二、yml配置文件三、ConfigurationProperties注解实现批量属性注入 一、参数提取到配置文件中 定义在代码中的参数的值分散在各个不同的文件中,不便于后期维护管理࿰…...
android 使用MediaPlayer实现音乐播放--获取音乐数据
前面已经添加了权限,有权限后可以去数据库读取音乐文件,一般可以获取全部音乐、专辑、歌手、流派等。 1. 获取全部音乐数据 class MusicHelper {companion object {SuppressLint("Range")fun getMusic(context: Context): MutableList<Mu…...
.net 8使用hangfire实现库存同步任务
C# 使用HangFire 第一章:.net Framework 4.6 WebAPI 使用Hangfire 第二章:net 8使用hangfire实现库存同步任务 文章目录 C# 使用HangFire前言项目源码一、项目架构二、项目服务介绍HangFire服务结构解析HangfireCollectionExtensions 类ModelHangfireSettingsHttpAuthInfoUs…...
第 22 章 - Go语言 测试与基准测试
在Go语言中,测试是一个非常重要的部分,它帮助开发者确保代码的正确性、性能以及可维护性。Go语言提供了一套标准的测试工具,这些工具可以帮助开发者编写单元测试、表达式测试(通常也是指单元测试中的断言)、基准测试等…...
VB.Net笔记-更新ing
目录 1.1 设置默认VS的开发环境为VB.NET(2024/11/18) 1.2 新建一个“Hello,world”的窗体(2024/11/18) 1.3 计算圆面积的小程序(2024/11/18) 显示/隐式 声明 (2024/11/18&…...
centos 服务器 docker 使用代理
宿主机使用代理 在宿主机的全局配置文件中添加代理信息 vim /etc/profile export http_proxyhttp://127.0.0.1:7897 export https_proxyhttp://127.0.0.1:7897 export no_proxy"localhost,127.0.0.1,::1,172.171.0.0" docker 命令使用代理 例如我想在使用使用 do…...
python语言基础
1. 基础语法 Q: Python 中的变量与数据类型有哪些? A: Python 支持多种数据类型,包括数字(整数 int、浮点数 float、复数 complex)、字符串 str、列表 list、元组 tuple、字典 dict 和集合 set。每种数据类型都有其特定的用途和…...
Python中的Apriori库详解
文章目录 Python中的Apriori库详解一、引言二、Apriori算法原理与Python实现1、Apriori算法原理2、Python实现1.1、数据准备1.2、转换数据1.3、计算频繁项集1.4、提取关联规则 三、案例分析1、导入必要的库2、准备数据集3、数据预处理4、应用Apriori算法5、生成关联规则6、打印…...
MongoDB比较查询操作符中英对照表及实例详解
mongodb比较查询操作符中英表格一览表 NameDescription功能$eqMatches values that are equal to a specified value.匹配值等于指定值。$gtMatches values that are greater than a specified value.匹配值大于指定值。$gteMatches values that are greater than or equal to…...
掌上单片机实验室 – RT-Thread + ROS2 初探(25)
在初步尝试RT-Thread之后,一直在琢磨如何进一步感受它的优点,因为前面只是用了它的内核,感觉和FreeRTOS、uCOS等RTOS差别不大,至于它们性能、可靠性上的差异,在这种学习性的程序中,很难有所察觉。 RT-Threa…...
Kotlin中的?.和!!主要区别
目录 1、?.和!!介绍 2、使用场景和最佳实践 3、代码示例和解释 1、?.和!!介绍 Kotlin中的?.和!!主要区别在于它们对空指针的处理方式。 ?.(安全调用操作符):当变量可能为null时,使用?.可以安全地调用其方法或属性…...
iframe嵌入踩坑记录
iframe嵌入父子页面token问题 背景介绍 最近在做在平台A中嵌入平台B某个页面的需求,我负责的是平台B这边,使这个页面被嵌入后能正常使用。两个平台都实现了单点登录。 其实这是第二次做这个功能了,原本以为会很顺利,但没想到折腾…...
面试小札:Java的类加载过程和类加载机制。
Java类加载过程 加载(Loading) 这是类加载过程的第一个阶段。在这个阶段,Java虚拟机(JVM)主要完成三件事: 通过类的全限定名来获取定义此类的二进制字节流。这可以从多种来源获取,如本地文件系…...
Spring 上下文对象
1. Spring 上下文对象概述 Spring 上下文对象(ApplicationContext)是 Spring 框架的核心接口之一,它扩展了 BeanFactory 接口,提供了更多企业级应用所需的功能。ApplicationContext 不仅可以管理 Bean 的生命周期和配置࿰…...
Wireshark抓取HTTPS流量技巧
一、工具准备 首先安装wireshark工具,官方链接:Wireshark Go Deep 二、环境变量配置 TLS 加密的核心是会话密钥。这些密钥由客户端和服务器协商生成,用于对通信流量进行对称加密。如果能通过 SSL/TLS 日志文件(例如包含密钥的…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权
摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题:安全。文章将详细阐述认证(Authentication) 与授权(Authorization的核心概念,对比传统 Session-Cookie 与现代 JWT(JS…...
32位寻址与64位寻址
32位寻址与64位寻址 32位寻址是什么? 32位寻址是指计算机的CPU、内存或总线系统使用32位二进制数来标识和访问内存中的存储单元(地址),其核心含义与能力如下: 1. 核心定义 地址位宽:CPU或内存控制器用32位…...
