行列式的理解与计算:线性代数中的核心概念
开发领域:前端开发 | AI 应用 | Web3D | 元宇宙
技术栈:JavaScript、React、ThreeJs、WebGL、Go
经验经验:6 年+ 前端开发经验,专注于图形渲染和 AI 技术
开源项目:github 简智未来、数字孪生引擎、前端面试题
大家好!我是 [晓智],一位热爱探索新技术的前端开发者,在这里分享前端和 Web3D、AI 技术的干货与实战经验。如果你对技术有热情,欢迎关注我的文章,我们一起成长、进步!
行列式是线性代数中一个非常重要的概念,它广泛应用于矩阵计算、线性方程组求解、向量空间分析等领域。在这篇博客中,我们将探讨行列式的定义、几何意义、计算方法,并提供一个用 JavaScript 实现的行列式计算示例。
一、行列式的定义
**行列式(Determinant)**是一个标量值,用于描述一个方阵的特性,比如是否可逆或矩阵变换对空间的影响。
对于一个 ( n \times n ) 的方阵 ( A ),行列式记为:
[
\text{det}(A) \quad \text{或} \quad |A|
]
例如, ( 2 \times 2 ) 矩阵的行列式计算公式:
[
\text{det}
\begin{bmatrix}
a & b \
c & d
\end{bmatrix}
= ad - bc
]
对于 ( 3 \times 3 ) 矩阵:
[
\text{det}
\begin{bmatrix}
a & b & c \
d & e & f \
g & h & i
\end{bmatrix}
= a(ei - fh) - b(di - fg) + c(dh - eg)
]
二、行列式的几何意义
行列式的几何意义主要体现在以下两方面:
-
体积缩放因子:
行列式的绝对值表示矩阵变换对单位体积的放缩比例。例如,若矩阵 ( A ) 的行列式为 ( |A| = 6 ),则该矩阵将单位面积放大 6 倍。 -
方向:
行列式的正负值表示线性变换是否改变了坐标系的方向。- (|A| > 0):未翻转方向;
- (|A| < 0):翻转了方向(如镜像变换)。
三、行列式的性质
行列式具有以下性质:
- 交换任意两行(或列),行列式符号会改变;
- 行列式为零表示矩阵不可逆;
- 如果矩阵的某行(列)全为零,则行列式为零;
- 两行(或列)成比例,行列式为零;
- 行列式的值与矩阵的大小无关,但与矩阵的行和列的内容密切相关。
四、JavaScript 实现行列式计算
以下是一个递归实现任意阶矩阵行列式的 JavaScript 示例:
function determinant(matrix) {const n = matrix.length;// 检查是否为方阵if (!matrix.every(row => row.length === n)) {throw new Error("矩阵必须是方阵");}// 基础情况:1x1 矩阵if (n === 1) {return matrix[0][0];}// 基础情况:2x2 矩阵if (n === 2) {return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0];}// 递归计算行列式let det = 0;for (let col = 0; col < n; col++) {const subMatrix = matrix.slice(1).map(row => row.filter((_, j) => j !== col));det += matrix[0][col] * determinant(subMatrix) * (col % 2 === 0 ? 1 : -1);}return det;
}// 测试
const matrix = [[1, 2, 3],[0, 4, 5],[1, 0, 6],
];console.log("行列式的值是:", determinant(matrix)); // 输出: -22
五、行列式的实际应用
行列式在以下领域有重要应用:
- 线性方程组求解: 使用克拉默法则(Cramer’s Rule)。
- 判断矩阵是否可逆: 行列式为零表示矩阵不可逆。
- 几何变换: 矩阵对空间的拉伸或缩放影响。
相关文章:

行列式的理解与计算:线性代数中的核心概念
开发领域:前端开发 | AI 应用 | Web3D | 元宇宙 技术栈:JavaScript、React、ThreeJs、WebGL、Go 经验经验:6 年 前端开发经验,专注于图形渲染和 AI 技术 开源项目:github 简智未来、数字孪生引擎、前端面试题 大家好&a…...

按出生日期排序(结构体专题)
题目描述 送人玫瑰手有余香,小明希望自己能带给他人快乐,于是小明在每个好友生日的时候发去一份生日祝福。小明希望将自己的通讯录按好友的生日排序排序,这样就查看起来方便多了,也避免错过好友的生日。为了小明的美好愿望&#x…...

【C++】拆分详解 - 多态
文章目录 一、概念二、定义和实现1. 多态的构成条件2. 虚函数2.1 虚函数的重写/覆盖2.2 虚函数重写的两个例外 3. override 和 final关键字4. 重载/重写/隐藏的对比5. 例题 三、纯虚函数和抽象类四、多态的原理1. 虚函数表2. 实现原理3. 动态绑定和静态绑定 总结 一、概念 多态…...

Python世界:力扣题解875,珂珂爱吃香蕉,中等
Python世界:力扣题解875,珂珂爱吃香蕉,中等 任务背景思路分析代码实现坑点排查测试套件本文小结 任务背景 问题来自力扣题目875 Koko Eating Bananas,大意如下: Koko loves to eat bananas. There are n piles of bana…...

Java设计模式 —— Java七大设计原则详解
文章目录 前言一、单一职责原则1、概述2、案例演示 二、接口隔离原则1、概述2、案例演示 三、依赖倒转原则1、概述2、案例演示 四、里氏替换原则1、概述2、案例演示 五、开闭原则1、概述2、案例演示 六、迪米特法则1、概述2、案例演示 七、合成/聚合复用原则1、概述2、组合3、聚…...

SpringBoot学习记录(六)配置文件参数化
SpringBoot学习记录(六)配置文件参数化 一、参数提取到配置文件中二、yml配置文件三、ConfigurationProperties注解实现批量属性注入 一、参数提取到配置文件中 定义在代码中的参数的值分散在各个不同的文件中,不便于后期维护管理࿰…...

android 使用MediaPlayer实现音乐播放--获取音乐数据
前面已经添加了权限,有权限后可以去数据库读取音乐文件,一般可以获取全部音乐、专辑、歌手、流派等。 1. 获取全部音乐数据 class MusicHelper {companion object {SuppressLint("Range")fun getMusic(context: Context): MutableList<Mu…...

.net 8使用hangfire实现库存同步任务
C# 使用HangFire 第一章:.net Framework 4.6 WebAPI 使用Hangfire 第二章:net 8使用hangfire实现库存同步任务 文章目录 C# 使用HangFire前言项目源码一、项目架构二、项目服务介绍HangFire服务结构解析HangfireCollectionExtensions 类ModelHangfireSettingsHttpAuthInfoUs…...

第 22 章 - Go语言 测试与基准测试
在Go语言中,测试是一个非常重要的部分,它帮助开发者确保代码的正确性、性能以及可维护性。Go语言提供了一套标准的测试工具,这些工具可以帮助开发者编写单元测试、表达式测试(通常也是指单元测试中的断言)、基准测试等…...

VB.Net笔记-更新ing
目录 1.1 设置默认VS的开发环境为VB.NET(2024/11/18) 1.2 新建一个“Hello,world”的窗体(2024/11/18) 1.3 计算圆面积的小程序(2024/11/18) 显示/隐式 声明 (2024/11/18&…...

centos 服务器 docker 使用代理
宿主机使用代理 在宿主机的全局配置文件中添加代理信息 vim /etc/profile export http_proxyhttp://127.0.0.1:7897 export https_proxyhttp://127.0.0.1:7897 export no_proxy"localhost,127.0.0.1,::1,172.171.0.0" docker 命令使用代理 例如我想在使用使用 do…...

python语言基础
1. 基础语法 Q: Python 中的变量与数据类型有哪些? A: Python 支持多种数据类型,包括数字(整数 int、浮点数 float、复数 complex)、字符串 str、列表 list、元组 tuple、字典 dict 和集合 set。每种数据类型都有其特定的用途和…...

Python中的Apriori库详解
文章目录 Python中的Apriori库详解一、引言二、Apriori算法原理与Python实现1、Apriori算法原理2、Python实现1.1、数据准备1.2、转换数据1.3、计算频繁项集1.4、提取关联规则 三、案例分析1、导入必要的库2、准备数据集3、数据预处理4、应用Apriori算法5、生成关联规则6、打印…...

MongoDB比较查询操作符中英对照表及实例详解
mongodb比较查询操作符中英表格一览表 NameDescription功能$eqMatches values that are equal to a specified value.匹配值等于指定值。$gtMatches values that are greater than a specified value.匹配值大于指定值。$gteMatches values that are greater than or equal to…...

掌上单片机实验室 – RT-Thread + ROS2 初探(25)
在初步尝试RT-Thread之后,一直在琢磨如何进一步感受它的优点,因为前面只是用了它的内核,感觉和FreeRTOS、uCOS等RTOS差别不大,至于它们性能、可靠性上的差异,在这种学习性的程序中,很难有所察觉。 RT-Threa…...

Kotlin中的?.和!!主要区别
目录 1、?.和!!介绍 2、使用场景和最佳实践 3、代码示例和解释 1、?.和!!介绍 Kotlin中的?.和!!主要区别在于它们对空指针的处理方式。 ?.(安全调用操作符):当变量可能为null时,使用?.可以安全地调用其方法或属性…...

iframe嵌入踩坑记录
iframe嵌入父子页面token问题 背景介绍 最近在做在平台A中嵌入平台B某个页面的需求,我负责的是平台B这边,使这个页面被嵌入后能正常使用。两个平台都实现了单点登录。 其实这是第二次做这个功能了,原本以为会很顺利,但没想到折腾…...

面试小札:Java的类加载过程和类加载机制。
Java类加载过程 加载(Loading) 这是类加载过程的第一个阶段。在这个阶段,Java虚拟机(JVM)主要完成三件事: 通过类的全限定名来获取定义此类的二进制字节流。这可以从多种来源获取,如本地文件系…...

Spring 上下文对象
1. Spring 上下文对象概述 Spring 上下文对象(ApplicationContext)是 Spring 框架的核心接口之一,它扩展了 BeanFactory 接口,提供了更多企业级应用所需的功能。ApplicationContext 不仅可以管理 Bean 的生命周期和配置࿰…...

Wireshark抓取HTTPS流量技巧
一、工具准备 首先安装wireshark工具,官方链接:Wireshark Go Deep 二、环境变量配置 TLS 加密的核心是会话密钥。这些密钥由客户端和服务器协商生成,用于对通信流量进行对称加密。如果能通过 SSL/TLS 日志文件(例如包含密钥的…...

测试人员--如何区分前端BUG和后端BUG
在软件测试中,发现一个BUG并不算难,但准确定位它的来源却常常让测试人员头疼。是前端页面的问题?还是后台服务的异常?如果搞错了方向,开发人员之间的沟通效率会大大降低,甚至导致问题久拖不决。 那么&#…...

【Vue】指令扩充(指令修饰符、样式绑定)
目录 指令修饰符 按键修饰符 事件修饰符 双向绑定指令修饰符 输入框 表单域 下拉框 单选按钮 复选框 样式绑定 分类 绑定class 绑定style tab页切换示例 指令修饰符 作用 借助指令修饰符,可以让指令的功能更强大 分类 按键修饰符:用来…...
Ubuntu20.04 Rk3588 交叉编译ffmpeg7.0
firefly 公司出的rk3588的设备,其中已经安装了gcc 交叉编译工具,系统版本是Ubuntu20.04。 使用Ubuntu20.04 交叉编译ffmpeg_ubuntu下配置ffmpeg交叉编译器为arm-linux-gnueabihf-gcc-CSDN博客文章浏览阅读541次。ubuntu20.04 交叉编译ffmpeg_ubuntu下配…...

HTML常用表格与标签
一、table表格标签: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title> </head> <body> <!--有大小为1的边框--> <table border"1">…...

网络安全与加密
1.Base64简单说明描述:Base64可以成为密码学的基石,非常重要。特点:可以将任意的二进制数据进行Base64编码结果:所有的数据都能被编码为并只用65个字符就能表示的文本文件。65字符:A~Z a~z 0~9 / 对文件进行base64编码…...

MySQL数据库-索引的介绍和使用
目录 MySQL数据库-索引1.索引介绍2.索引分类3.创建索引3.1 唯一索引3.2 普通索引3.3 组合索引3.4 全文索引 4.索引使用5.查看索引6.删除索引7.索引总结7.1 优点7.2 缺点7.3 索引使用注意事项 MySQL数据库-索引 数据库是用来存储数据,在互联网应用中,数据…...

【图像去噪】论文精读:Pre-Trained Image Processing Transformer(IPT)
请先看【专栏介绍文章】:【图像去噪(Image Denoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中) 文章目录 前言Abstract1. Introduction2. Related…...

Java SE 与 Java EE:基础与进阶的探索之旅
在编程世界中,Java语言以其跨平台、面向对象、丰富的类库等特点,成为了众多开发者和企业的首选编程语言。而Java SE与Java EE,作为Java平台的两个重要组成部分,各自承载着不同的使命,同时又紧密相连,共同构…...

ssm旅游推荐系统的设计与开发
摘 要 旅游推荐系统是一个综合性的在线旅游推荐平台,旨在为用户提供便捷的旅游规划和预定服务。通过该系统,用户能够浏览各类景点信息并进行分类查找,同时获取详尽的景点介绍和相关照片,以辅助做出旅行决策。系统提供在线门票订购…...

【人工智能】用Python和NLP工具构建文本摘要模型:使用NLTK和spaCy进行自然语言处理
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 文本摘要是自然语言处理(NLP)中的关键任务之一,广泛应用于新闻、博客、社交媒体和搜索引擎等场景。通过生成简洁而准确的文本摘要,我们可以大大提升信息处理效率。本文将探讨如何使用Python结合NLP工具…...