当前位置: 首页 > news >正文

行列式的理解与计算:线性代数中的核心概念

开发领域:前端开发 | AI 应用 | Web3D | 元宇宙
技术栈:JavaScript、React、ThreeJs、WebGL、Go
经验经验:6 年+ 前端开发经验,专注于图形渲染和 AI 技术
开源项目:github 简智未来、数字孪生引擎、前端面试题
大家好!我是 [晓智],一位热爱探索新技术的前端开发者,在这里分享前端和 Web3D、AI 技术的干货与实战经验。如果你对技术有热情,欢迎关注我的文章,我们一起成长、进步!

行列式是线性代数中一个非常重要的概念,它广泛应用于矩阵计算、线性方程组求解、向量空间分析等领域。在这篇博客中,我们将探讨行列式的定义、几何意义、计算方法,并提供一个用 JavaScript 实现的行列式计算示例。


一、行列式的定义

**行列式(Determinant)**是一个标量值,用于描述一个方阵的特性,比如是否可逆或矩阵变换对空间的影响。

对于一个 ( n \times n ) 的方阵 ( A ),行列式记为:
[
\text{det}(A) \quad \text{或} \quad |A|
]

例如, ( 2 \times 2 ) 矩阵的行列式计算公式:
[
\text{det}
\begin{bmatrix}
a & b \
c & d
\end{bmatrix}
= ad - bc
]

对于 ( 3 \times 3 ) 矩阵:
[
\text{det}
\begin{bmatrix}
a & b & c \
d & e & f \
g & h & i
\end{bmatrix}
= a(ei - fh) - b(di - fg) + c(dh - eg)
]


二、行列式的几何意义

行列式的几何意义主要体现在以下两方面:

  1. 体积缩放因子:
    行列式的绝对值表示矩阵变换对单位体积的放缩比例。例如,若矩阵 ( A ) 的行列式为 ( |A| = 6 ),则该矩阵将单位面积放大 6 倍。

  2. 方向:
    行列式的正负值表示线性变换是否改变了坐标系的方向。

    • (|A| > 0):未翻转方向;
    • (|A| < 0):翻转了方向(如镜像变换)。

三、行列式的性质

行列式具有以下性质:

  1. 交换任意两行(或列),行列式符号会改变;
  2. 行列式为零表示矩阵不可逆;
  3. 如果矩阵的某行(列)全为零,则行列式为零;
  4. 两行(或列)成比例,行列式为零;
  5. 行列式的值与矩阵的大小无关,但与矩阵的行和列的内容密切相关。

四、JavaScript 实现行列式计算

以下是一个递归实现任意阶矩阵行列式的 JavaScript 示例:

function determinant(matrix) {const n = matrix.length;// 检查是否为方阵if (!matrix.every(row => row.length === n)) {throw new Error("矩阵必须是方阵");}// 基础情况:1x1 矩阵if (n === 1) {return matrix[0][0];}// 基础情况:2x2 矩阵if (n === 2) {return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0];}// 递归计算行列式let det = 0;for (let col = 0; col < n; col++) {const subMatrix = matrix.slice(1).map(row => row.filter((_, j) => j !== col));det += matrix[0][col] * determinant(subMatrix) * (col % 2 === 0 ? 1 : -1);}return det;
}// 测试
const matrix = [[1, 2, 3],[0, 4, 5],[1, 0, 6],
];console.log("行列式的值是:", determinant(matrix)); // 输出: -22

五、行列式的实际应用

行列式在以下领域有重要应用:

  • 线性方程组求解: 使用克拉默法则(Cramer’s Rule)。
  • 判断矩阵是否可逆: 行列式为零表示矩阵不可逆。
  • 几何变换: 矩阵对空间的拉伸或缩放影响。

相关文章:

行列式的理解与计算:线性代数中的核心概念

开发领域&#xff1a;前端开发 | AI 应用 | Web3D | 元宇宙 技术栈&#xff1a;JavaScript、React、ThreeJs、WebGL、Go 经验经验&#xff1a;6 年 前端开发经验&#xff0c;专注于图形渲染和 AI 技术 开源项目&#xff1a;github 简智未来、数字孪生引擎、前端面试题 大家好&a…...

按出生日期排序(结构体专题)

题目描述 送人玫瑰手有余香&#xff0c;小明希望自己能带给他人快乐&#xff0c;于是小明在每个好友生日的时候发去一份生日祝福。小明希望将自己的通讯录按好友的生日排序排序&#xff0c;这样就查看起来方便多了&#xff0c;也避免错过好友的生日。为了小明的美好愿望&#x…...

【C++】拆分详解 - 多态

文章目录 一、概念二、定义和实现1. 多态的构成条件2. 虚函数2.1 虚函数的重写/覆盖2.2 虚函数重写的两个例外 3. override 和 final关键字4. 重载/重写/隐藏的对比5. 例题 三、纯虚函数和抽象类四、多态的原理1. 虚函数表2. 实现原理3. 动态绑定和静态绑定 总结 一、概念 多态…...

Python世界:力扣题解875,珂珂爱吃香蕉,中等

Python世界&#xff1a;力扣题解875&#xff0c;珂珂爱吃香蕉&#xff0c;中等 任务背景思路分析代码实现坑点排查测试套件本文小结 任务背景 问题来自力扣题目875 Koko Eating Bananas&#xff0c;大意如下&#xff1a; Koko loves to eat bananas. There are n piles of bana…...

Java设计模式 —— Java七大设计原则详解

文章目录 前言一、单一职责原则1、概述2、案例演示 二、接口隔离原则1、概述2、案例演示 三、依赖倒转原则1、概述2、案例演示 四、里氏替换原则1、概述2、案例演示 五、开闭原则1、概述2、案例演示 六、迪米特法则1、概述2、案例演示 七、合成/聚合复用原则1、概述2、组合3、聚…...

SpringBoot学习记录(六)配置文件参数化

SpringBoot学习记录&#xff08;六&#xff09;配置文件参数化 一、参数提取到配置文件中二、yml配置文件三、ConfigurationProperties注解实现批量属性注入 一、参数提取到配置文件中 定义在代码中的参数的值分散在各个不同的文件中&#xff0c;不便于后期维护管理&#xff0…...

android 使用MediaPlayer实现音乐播放--获取音乐数据

前面已经添加了权限&#xff0c;有权限后可以去数据库读取音乐文件&#xff0c;一般可以获取全部音乐、专辑、歌手、流派等。 1. 获取全部音乐数据 class MusicHelper {companion object {SuppressLint("Range")fun getMusic(context: Context): MutableList<Mu…...

.net 8使用hangfire实现库存同步任务

C# 使用HangFire 第一章:.net Framework 4.6 WebAPI 使用Hangfire 第二章:net 8使用hangfire实现库存同步任务 文章目录 C# 使用HangFire前言项目源码一、项目架构二、项目服务介绍HangFire服务结构解析HangfireCollectionExtensions 类ModelHangfireSettingsHttpAuthInfoUs…...

第 22 章 - Go语言 测试与基准测试

在Go语言中&#xff0c;测试是一个非常重要的部分&#xff0c;它帮助开发者确保代码的正确性、性能以及可维护性。Go语言提供了一套标准的测试工具&#xff0c;这些工具可以帮助开发者编写单元测试、表达式测试&#xff08;通常也是指单元测试中的断言&#xff09;、基准测试等…...

VB.Net笔记-更新ing

目录 1.1 设置默认VS的开发环境为VB.NET&#xff08;2024/11/18&#xff09; 1.2 新建一个“Hello&#xff0c;world”的窗体&#xff08;2024/11/18&#xff09; 1.3 计算圆面积的小程序&#xff08;2024/11/18&#xff09; 显示/隐式 声明 &#xff08;2024/11/18&…...

centos 服务器 docker 使用代理

宿主机使用代理 在宿主机的全局配置文件中添加代理信息 vim /etc/profile export http_proxyhttp://127.0.0.1:7897 export https_proxyhttp://127.0.0.1:7897 export no_proxy"localhost,127.0.0.1,::1,172.171.0.0" docker 命令使用代理 例如我想在使用使用 do…...

python语言基础

1. 基础语法 Q: Python 中的变量与数据类型有哪些&#xff1f; A: Python 支持多种数据类型&#xff0c;包括数字&#xff08;整数 int、浮点数 float、复数 complex&#xff09;、字符串 str、列表 list、元组 tuple、字典 dict 和集合 set。每种数据类型都有其特定的用途和…...

Python中的Apriori库详解

文章目录 Python中的Apriori库详解一、引言二、Apriori算法原理与Python实现1、Apriori算法原理2、Python实现1.1、数据准备1.2、转换数据1.3、计算频繁项集1.4、提取关联规则 三、案例分析1、导入必要的库2、准备数据集3、数据预处理4、应用Apriori算法5、生成关联规则6、打印…...

MongoDB比较查询操作符中英对照表及实例详解

mongodb比较查询操作符中英表格一览表 NameDescription功能$eqMatches values that are equal to a specified value.匹配值等于指定值。$gtMatches values that are greater than a specified value.匹配值大于指定值。$gteMatches values that are greater than or equal to…...

掌上单片机实验室 – RT-Thread + ROS2 初探(25)

在初步尝试RT-Thread之后&#xff0c;一直在琢磨如何进一步感受它的优点&#xff0c;因为前面只是用了它的内核&#xff0c;感觉和FreeRTOS、uCOS等RTOS差别不大&#xff0c;至于它们性能、可靠性上的差异&#xff0c;在这种学习性的程序中&#xff0c;很难有所察觉。 RT-Threa…...

‌Kotlin中的?.和!!主要区别

目录 1、?.和!!介绍 2、使用场景和最佳实践 3、代码示例和解释 1、?.和!!介绍 ‌Kotlin中的?.和!!主要区别在于它们对空指针的处理方式。‌ ‌?.&#xff08;安全调用操作符&#xff09;‌&#xff1a;当变量可能为null时&#xff0c;使用?.可以安全地调用其方法或属性…...

iframe嵌入踩坑记录

iframe嵌入父子页面token问题 背景介绍 最近在做在平台A中嵌入平台B某个页面的需求&#xff0c;我负责的是平台B这边&#xff0c;使这个页面被嵌入后能正常使用。两个平台都实现了单点登录。 其实这是第二次做这个功能了&#xff0c;原本以为会很顺利&#xff0c;但没想到折腾…...

面试小札:Java的类加载过程和类加载机制。

Java类加载过程 加载&#xff08;Loading&#xff09; 这是类加载过程的第一个阶段。在这个阶段&#xff0c;Java虚拟机&#xff08;JVM&#xff09;主要完成三件事&#xff1a; 通过类的全限定名来获取定义此类的二进制字节流。这可以从多种来源获取&#xff0c;如本地文件系…...

Spring 上下文对象

1. Spring 上下文对象概述 Spring 上下文对象&#xff08;ApplicationContext&#xff09;是 Spring 框架的核心接口之一&#xff0c;它扩展了 BeanFactory 接口&#xff0c;提供了更多企业级应用所需的功能。ApplicationContext 不仅可以管理 Bean 的生命周期和配置&#xff0…...

Wireshark抓取HTTPS流量技巧

一、工具准备 首先安装wireshark工具&#xff0c;官方链接&#xff1a;Wireshark Go Deep 二、环境变量配置 TLS 加密的核心是会话密钥。这些密钥由客户端和服务器协商生成&#xff0c;用于对通信流量进行对称加密。如果能通过 SSL/TLS 日志文件&#xff08;例如包含密钥的…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...