当前位置: 首页 > news >正文

神经网络问题之一:梯度消失(Vanishing Gradient)

        梯度消失(Vanishing Gradient)问题是深度神经网络训练中的一个关键问题,它主要发生在反向传播过程中,导致靠近输入层的权重更新变得非常缓慢甚至几乎停滞,严重影响网络的训练效果和性能。

图1 在深度神经网络中容易出现梯度消失和梯度爆炸问题

        超过三层以上的神经网络称为深度神经网络。

一、定义与现象

        梯度消失是指在深度神经网络的反向传播过程中,随着网络层数的增加,梯度值逐层减小,最终趋近于零。这会导致靠近输入层的隐藏层权重更新变得非常缓慢,几乎不更新,从而阻止网络从输入数据中学习有效的特征表示。

先了解几个基本概念和反向传播过程

1. 几个基本概念

        (1)前向传播:数据从输入层开始,经过隐藏层,最终到达输出层的过程。在这个过程中,每一层的输入都是前一层的输出,而每一层的输出则作为下一层的输入。

        (2)损失函数:用于量化模型预测值与实际值之间的差异。常见的损失函数包括均方误差、交叉熵损失等。

        (3)梯度:损失函数相对于网络参数的偏导数,表示了损失函数在该点处相对于参数的变化率。

2. 反向传播步骤

        (1)计算输出层的误差:根据损失函数,计算输出层的预测值与实际值之间的差异,得到输出层的误差。

        (2)逐层反向传播误差:从输出层开始,使用链式法则逐层计算每个隐藏层的误差。链式法则允许我们将输出层的误差反向传播到每一层,并计算每层的梯度。对于每一层,我们计算该层每个神经元的梯度,这个梯度表示了损失函数相对于该神经元权重的偏导数。

        (3)更新网络参数:使用计算得到的梯度,根据梯度下降算法或其他优化算法,更新网络的权重和偏置。梯度下降算法的更新公式为:new_parameter = old_parameter - learning_rate * gradient,其中learning_rate是学习率,用于控制更新的步长。

图2 深度神经网络的反向传播过程

、原因

        梯度消失问题主要由以下几个因素引起:

        1. 激活函数的选择:某些非线性激活函数(如Sigmoid和Tanh)在输入值非常大或非常小时,其导数(或梯度)会趋近于零。在深度神经网络中,这些激活函数的梯度在反向传播过程中会逐层累积减小,最终导致梯度消失。

        经过神经网络中多层的变换,很可能使得后面层的输入数据变得过大或过小,从而掉进激活函数(例如Sigmoid、Tanh)的饱和区。

图3 Sigmoid函数存在梯度消失问题

        饱和区的梯度随x的变化y的变化很不明显,即会产生梯度消失问题,进而导致学习过程停止。为防止这个问题,我们希望,数据落入激活函数中间的非饱和区。为了降低内部协变量偏移所带来的负面影响,在训练过程中一般会采用非饱和型激活函数(ReLU)、精细的网络参数初始化,保守的学习率,但这不仅会使得网络的学习速度太慢,还会使得最终效果特别依赖于网络的初始化。

        2. 链式法则的应用:在深度神经网络中,梯度是通过链式法则从输出层逐层反向传播到输入层的。每一层的梯度都是前一层梯度与该层激活函数导数的乘积。如果每一层的梯度都稍微减小一点,那么经过多层传播后,梯度值就会变得非常小,几乎为零。

        3. 权重初始化不当:如果网络权重的初始值设置得太小,那么在前向传播过程中,输入信号可能会迅速衰减,导致激活函数的输入值非常小,进而使得梯度在反向传播过程中也迅速减小。

        4. 网络层数过多:随着网络层数的增加,梯度需要通过更多的层进行反向传播。每一层都可能对梯度进行一定的衰减,因此层数越多,梯度消失的风险就越大。

、影响

        梯度消失问题对深度神经网络的训练效果和性能有着显著的影响。由于靠近输入层的权重更新变得非常缓慢甚至几乎停滞,这会导致网络无法从输入数据中学习有效的特征表示,从而降低模型的准确性和泛化能力。

、解决方法

        为了解决梯度消失问题,可以采取以下措施:

        1. 选择合适的激活函数:使用ReLU及其变体(如Leaky ReLU、Parametric ReLU等)作为激活函数。这些激活函数在输入为正时具有恒定的导数(对于ReLU为1),有助于缓解梯度消失问题。同时,它们还具有计算简单、收敛速度快等优点。

        合理的权重初始化:采用合适的权重初始化方法(如He初始化或Glorot初始化)来设置网络权重的初始值。这些方法可以根据网络的层数和激活函数的特点来设置权重的初始值,从而减小梯度消失的风险。

        2. 引入批量归一化(Batch Normalization):在每一层的输入处进行归一化操作,使每一层的输入分布更加稳定。这有助于减小内部协变量偏移(Internal Covariate Shift)问题,提高模型的收敛速度和稳定性,同时也在一定程度上缓解梯度消失问题。

        3. 使用残差连接(Residual Connections):通过引入残差连接来构建残差网络(Residual Networks, ResNets)。残差连接允许梯度在反向传播时直接跳过某些层,从而缓解梯度消失的现象。这种方法在深度神经网络中非常有效,可以显著提高模型的训练效果和性能。

        4. 调整优化算法参数:合理设置优化算法的学习率、动量等参数。学习率不宜过大也不宜过小,以避免权重更新过快或过慢而导致的梯度消失或梯度爆炸问题。动量参数可以帮助稳定梯度更新过程,提高训练的稳定性。

相关文章:

神经网络问题之一:梯度消失(Vanishing Gradient)

梯度消失(Vanishing Gradient)问题是深度神经网络训练中的一个关键问题,它主要发生在反向传播过程中,导致靠近输入层的权重更新变得非常缓慢甚至几乎停滞,严重影响网络的训练效果和性能。 图1 在深度神经网络中容易出现…...

企业网页设计的安全与数据保护

企业网页设计不仅要考虑美观和功能性,安全与数据保护也是重中之重。在这个信息爆炸的时代,用户的数据隐私和安全问题日益凸显,企业必须采取多种措施来保障用户的信息安全。 首先,**SSL加密**是基础中的基础。通过使用SSL证书&…...

对 TypeScript 中类是怎么理解的?都有哪些应用场景?

在 TypeScript 中,类(class)是面向对象编程的核心构造之一,它允许你创建具有特定属性和方法的对象模板。TypeScript 的类概念和 JavaScript 中的类基本相同,但它提供了额外的类型检查和静态类型系统,从而增…...

2024“龙信杯“电子数据取证竞赛-服务器取证题目Writeup

服务器检材-分析 前置 提示:该服务器做了登录密码校验配置,如果没有拿到服务器的密码而直接仿真服务器,输入密码进入系统后,服务器会将部分数据给自动删除 前提:无 因为我们仿真进入服务器会自动删除文件&#xff0…...

Label-studio-ml-backend 和YOLOV8 YOLO11自动化标注,目标检测,实例分割,图像分类,关键点估计,视频跟踪

这里写目录标题 1.目标检测 Detection2.实例分割 segment3.图像分类 classify4.关键点估计 Keypoint detection5.视频帧检测 video detect6.视频帧分类 video classify7.旋转目标检测 obb detect8.替换yolo11模型 给我点个赞吧,谢谢了附录coco80类名称 笔记本 华为m…...

Elasticsearch Windows版的安装及启动

一、下载 https://www.elastic.co/cn/downloads/past-releases#elasticsearch 如下图 选择版本 我用的是7.17.5 你换成你需要的版本 二 使用 1.解压 解压完如图 2.启动 进入 bin 文件目录,双击运行 elasticsearch.bat 文件启动 ES 服务 出现报错 Cause…...

解决 VMware 嵌套虚拟化提示 关闭“侧通道缓解“

最近给电脑做了新版的 Windows 11 LTSC操作系统,在启动VMware Workstation时,提示"此虚拟机已启用侧通道缓解,可增强安全性,但也会降低性能",但是我没有启用 Hyper-V 相关的任何功能以及 WSL, 从…...

基于Redis实现的手机短信登入功能

目录 开发准备 注册阿里短信服务 依赖坐标 阿里短信 依赖 mybatis-plus 依赖 redis 依赖 配置文件 导入数据库表 短信发送工具类 生成随机验证码的工具类 校验合法手机号的工具类 ThreadLocal 线程工具类 消息工具类 基于 session 的短信登录的问题 开发教程 Redis 结构设计 …...

C# NetworkStream用法

一、注意事项: NetworkStream 是稳定的,面向连接的,所以它只适合 TCP 协议的环境下工作所以一旦在 UDP环境中,虽然编译不会报错,但是会跳出异常。如果用构造产生NetworkStream的实例,则必须使用连接的Socke…...

华三预赛从零开始学习笔记(每日编辑,复习完为止)

知识点分布 路由交换技术基础 计算机网络基本概念 计算机网络基本概念: 很多电脑和设备通过电线或无线信号连在一起,可以互相“说话”和“分享东西” 网络的主要形式和发展历程: 诞生阶段-最早的计算机网络是以单个计算机为中心的联机系统-终…...

MySQL基础大全(看这一篇足够!!!)

文章目录 前言一、初识MySQL1.1 数据库基础1.2 数据库技术构成1.2.1 数据库系统1.2.2 SQL语言1.2.3 数据库访问接口 1.3 什么是MySQL 二、数据库的基本操作2.1 数据库创建和删除2.2 数据库存储引擎2.2.1 MySQL存储引擎简介2.2.2 InnoDB存储引擎2.2.3 MyISAM存储引擎2.2.4 存储引…...

[ 应急响应进阶篇-2 ] Linux创建后门并进行应急处置-1:超级用户帐号后门

🍬 博主介绍 👨‍🎓 博主介绍:大家好,我是 _PowerShell ,很高兴认识大家~ ✨主攻领域:【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 🎉点赞➕评论➕收藏 养成习…...

【无人机/平衡车/机器人】详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波

详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波 效果: 更多单片机项目,单片机项目合集列表目录与专栏说明: 单片机项目合集列表与专栏说明——Excel合集列表目录查阅(持续更新)-CSDN博客​编辑https://archie.blog.csdn.net/article/details/142381401https:/…...

数据结构-8.Java. 七大排序算法(上篇)

本篇博客给大家带来的是排序的知识点, 由于时间有限, 分两天来写, 上篇主要实现 前四种排序算法: 直接插入, 希尔, 选择, 堆排。 文章专栏: Java-数据结构 若有问题 评论区见 欢迎大家点赞 评论 收藏 分享 如果你不知道分享给谁,那就分享给薯条. 你们的支持是我不断创作的动力 …...

YOLOV5/rknn生成可执行文件部署在RK3568上

接上一篇文章best-sim.rknn模型生成好后,我们要将其转换成可执行文件运行在RK3568上,这一步需要在rknpu上进行,在强调一遍!!rknpu的作用是可以直接生成在开发板上运行的程序 退出上一步的docker环境 exit1.复制best-…...

java http body的格式 ‌application/x-www-form-urlencoded‌不支持文件上传

在Java中,HTTP请求的body部分可以包含多种格式的数据,主要包括以下几种‌: ‌application/x-www-form-urlencoded‌:这种格式将数据编码成键值对的形式,键和值都进行了URL编码,键值对之间用&符号连接。…...

GPU服务器厂家:为什么要选择 GPU 服务器?

文章来源于百家号:GPU服务器厂家 嘿,各位小伙伴们!今天咱来聊聊为啥要选择 GPU 服务器,特别是定制化的那种哦。 你们知道吗?现在定制化 GPU 服务器那可是超火的,简直就是科研项目的超强 “外挂”&#x…...

Python操作neo4j库py2neo使用之py2neo 删除及事务相关操作(三)

Python操作neo4j库py2neo使用之py2neo 删除及事务相关操作(三) py2neo 删除 1、连接数据库 from py2neo import Graph graph Graph("bolt://xx.xx.xx.xx:7687", auth(user, pwd), nameneo4j)2、删除节点 # 删除单个节点 node graph.node…...

Idea忽略提交文件、Idea设置文件隐藏、Idea提交时隐藏部分文件、git提交时忽略文件

文章目录 一、在idea中commit文件时隐藏文件方式一:创建.gitignore文件(推荐)方式二:‌通过File Types设置隐藏文件方式三:通过Git配置忽略文件‌(不推荐)总结 二、可能遇到的问题2.1、.gitigno…...

python如何使用spark操作hive

文章目录 1、服务启动2、修改配置3、验证4、开发环境编写代码操作hive 1、服务启动 # 启动hdfs和yarn start-all.sh # 日志服务也需要启动一下 mapred --daemon start historyserver # 启动spark的日志服务 /opt/installs/spark/sbin/start-history-server.sh #启动hive的meta…...

Cursor实现用excel数据填充word模版的方法

cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...

【JavaEE】-- HTTP

1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...

深度学习水论文:mamba+图像增强

🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

Java后端检查空条件查询

通过抛出运行异常&#xff1a;throw new RuntimeException("请输入查询条件&#xff01;");BranchWarehouseServiceImpl.java // 查询试剂交易&#xff08;入库/出库&#xff09;记录Overridepublic List<BranchWarehouseTransactions> queryForReagent(Branch…...

CTF show 数学不及格

拿到题目先查一下壳&#xff0c;看一下信息 发现是一个ELF文件&#xff0c;64位的 ​ 用IDA Pro 64 打开这个文件 ​ 然后点击F5进行伪代码转换 可以看到有五个if判断&#xff0c;第一个argc ! 5这个判断并没有起太大作用&#xff0c;主要是下面四个if判断 ​ 根据题目…...