神经网络问题之一:梯度消失(Vanishing Gradient)
梯度消失(Vanishing Gradient)问题是深度神经网络训练中的一个关键问题,它主要发生在反向传播过程中,导致靠近输入层的权重更新变得非常缓慢甚至几乎停滞,严重影响网络的训练效果和性能。

图1 在深度神经网络中容易出现梯度消失和梯度爆炸问题
超过三层以上的神经网络称为深度神经网络。
一、定义与现象
梯度消失是指在深度神经网络的反向传播过程中,随着网络层数的增加,梯度值逐层减小,最终趋近于零。这会导致靠近输入层的隐藏层权重更新变得非常缓慢,几乎不更新,从而阻止网络从输入数据中学习有效的特征表示。
二、先了解几个基本概念和反向传播过程
1. 几个基本概念
(1)前向传播:数据从输入层开始,经过隐藏层,最终到达输出层的过程。在这个过程中,每一层的输入都是前一层的输出,而每一层的输出则作为下一层的输入。
(2)损失函数:用于量化模型预测值与实际值之间的差异。常见的损失函数包括均方误差、交叉熵损失等。
(3)梯度:损失函数相对于网络参数的偏导数,表示了损失函数在该点处相对于参数的变化率。
2. 反向传播步骤
(1)计算输出层的误差:根据损失函数,计算输出层的预测值与实际值之间的差异,得到输出层的误差。
(2)逐层反向传播误差:从输出层开始,使用链式法则逐层计算每个隐藏层的误差。链式法则允许我们将输出层的误差反向传播到每一层,并计算每层的梯度。对于每一层,我们计算该层每个神经元的梯度,这个梯度表示了损失函数相对于该神经元权重的偏导数。
(3)更新网络参数:使用计算得到的梯度,根据梯度下降算法或其他优化算法,更新网络的权重和偏置。梯度下降算法的更新公式为:new_parameter = old_parameter - learning_rate * gradient,其中learning_rate是学习率,用于控制更新的步长。

图2 深度神经网络的反向传播过程
三、原因
梯度消失问题主要由以下几个因素引起:
1. 激活函数的选择:某些非线性激活函数(如Sigmoid和Tanh)在输入值非常大或非常小时,其导数(或梯度)会趋近于零。在深度神经网络中,这些激活函数的梯度在反向传播过程中会逐层累积减小,最终导致梯度消失。
经过神经网络中多层的变换,很可能使得后面层的输入数据变得过大或过小,从而掉进激活函数(例如Sigmoid、Tanh)的饱和区。

图3 Sigmoid函数存在梯度消失问题
饱和区的梯度随x的变化y的变化很不明显,即会产生梯度消失问题,进而导致学习过程停止。为防止这个问题,我们希望,数据落入激活函数中间的非饱和区。为了降低内部协变量偏移所带来的负面影响,在训练过程中一般会采用非饱和型激活函数(ReLU)、精细的网络参数初始化,保守的学习率,但这不仅会使得网络的学习速度太慢,还会使得最终效果特别依赖于网络的初始化。
2. 链式法则的应用:在深度神经网络中,梯度是通过链式法则从输出层逐层反向传播到输入层的。每一层的梯度都是前一层梯度与该层激活函数导数的乘积。如果每一层的梯度都稍微减小一点,那么经过多层传播后,梯度值就会变得非常小,几乎为零。
3. 权重初始化不当:如果网络权重的初始值设置得太小,那么在前向传播过程中,输入信号可能会迅速衰减,导致激活函数的输入值非常小,进而使得梯度在反向传播过程中也迅速减小。
4. 网络层数过多:随着网络层数的增加,梯度需要通过更多的层进行反向传播。每一层都可能对梯度进行一定的衰减,因此层数越多,梯度消失的风险就越大。
四、影响
梯度消失问题对深度神经网络的训练效果和性能有着显著的影响。由于靠近输入层的权重更新变得非常缓慢甚至几乎停滞,这会导致网络无法从输入数据中学习有效的特征表示,从而降低模型的准确性和泛化能力。
五、解决方法
为了解决梯度消失问题,可以采取以下措施:
1. 选择合适的激活函数:使用ReLU及其变体(如Leaky ReLU、Parametric ReLU等)作为激活函数。这些激活函数在输入为正时具有恒定的导数(对于ReLU为1),有助于缓解梯度消失问题。同时,它们还具有计算简单、收敛速度快等优点。
合理的权重初始化:采用合适的权重初始化方法(如He初始化或Glorot初始化)来设置网络权重的初始值。这些方法可以根据网络的层数和激活函数的特点来设置权重的初始值,从而减小梯度消失的风险。
2. 引入批量归一化(Batch Normalization):在每一层的输入处进行归一化操作,使每一层的输入分布更加稳定。这有助于减小内部协变量偏移(Internal Covariate Shift)问题,提高模型的收敛速度和稳定性,同时也在一定程度上缓解梯度消失问题。
3. 使用残差连接(Residual Connections):通过引入残差连接来构建残差网络(Residual Networks, ResNets)。残差连接允许梯度在反向传播时直接跳过某些层,从而缓解梯度消失的现象。这种方法在深度神经网络中非常有效,可以显著提高模型的训练效果和性能。
4. 调整优化算法参数:合理设置优化算法的学习率、动量等参数。学习率不宜过大也不宜过小,以避免权重更新过快或过慢而导致的梯度消失或梯度爆炸问题。动量参数可以帮助稳定梯度更新过程,提高训练的稳定性。
相关文章:
神经网络问题之一:梯度消失(Vanishing Gradient)
梯度消失(Vanishing Gradient)问题是深度神经网络训练中的一个关键问题,它主要发生在反向传播过程中,导致靠近输入层的权重更新变得非常缓慢甚至几乎停滞,严重影响网络的训练效果和性能。 图1 在深度神经网络中容易出现…...
企业网页设计的安全与数据保护
企业网页设计不仅要考虑美观和功能性,安全与数据保护也是重中之重。在这个信息爆炸的时代,用户的数据隐私和安全问题日益凸显,企业必须采取多种措施来保障用户的信息安全。 首先,**SSL加密**是基础中的基础。通过使用SSL证书&…...
对 TypeScript 中类是怎么理解的?都有哪些应用场景?
在 TypeScript 中,类(class)是面向对象编程的核心构造之一,它允许你创建具有特定属性和方法的对象模板。TypeScript 的类概念和 JavaScript 中的类基本相同,但它提供了额外的类型检查和静态类型系统,从而增…...
2024“龙信杯“电子数据取证竞赛-服务器取证题目Writeup
服务器检材-分析 前置 提示:该服务器做了登录密码校验配置,如果没有拿到服务器的密码而直接仿真服务器,输入密码进入系统后,服务器会将部分数据给自动删除 前提:无 因为我们仿真进入服务器会自动删除文件࿰…...
Label-studio-ml-backend 和YOLOV8 YOLO11自动化标注,目标检测,实例分割,图像分类,关键点估计,视频跟踪
这里写目录标题 1.目标检测 Detection2.实例分割 segment3.图像分类 classify4.关键点估计 Keypoint detection5.视频帧检测 video detect6.视频帧分类 video classify7.旋转目标检测 obb detect8.替换yolo11模型 给我点个赞吧,谢谢了附录coco80类名称 笔记本 华为m…...
Elasticsearch Windows版的安装及启动
一、下载 https://www.elastic.co/cn/downloads/past-releases#elasticsearch 如下图 选择版本 我用的是7.17.5 你换成你需要的版本 二 使用 1.解压 解压完如图 2.启动 进入 bin 文件目录,双击运行 elasticsearch.bat 文件启动 ES 服务 出现报错 Cause…...
解决 VMware 嵌套虚拟化提示 关闭“侧通道缓解“
最近给电脑做了新版的 Windows 11 LTSC操作系统,在启动VMware Workstation时,提示"此虚拟机已启用侧通道缓解,可增强安全性,但也会降低性能",但是我没有启用 Hyper-V 相关的任何功能以及 WSL, 从…...
基于Redis实现的手机短信登入功能
目录 开发准备 注册阿里短信服务 依赖坐标 阿里短信 依赖 mybatis-plus 依赖 redis 依赖 配置文件 导入数据库表 短信发送工具类 生成随机验证码的工具类 校验合法手机号的工具类 ThreadLocal 线程工具类 消息工具类 基于 session 的短信登录的问题 开发教程 Redis 结构设计 …...
C# NetworkStream用法
一、注意事项: NetworkStream 是稳定的,面向连接的,所以它只适合 TCP 协议的环境下工作所以一旦在 UDP环境中,虽然编译不会报错,但是会跳出异常。如果用构造产生NetworkStream的实例,则必须使用连接的Socke…...
华三预赛从零开始学习笔记(每日编辑,复习完为止)
知识点分布 路由交换技术基础 计算机网络基本概念 计算机网络基本概念: 很多电脑和设备通过电线或无线信号连在一起,可以互相“说话”和“分享东西” 网络的主要形式和发展历程: 诞生阶段-最早的计算机网络是以单个计算机为中心的联机系统-终…...
MySQL基础大全(看这一篇足够!!!)
文章目录 前言一、初识MySQL1.1 数据库基础1.2 数据库技术构成1.2.1 数据库系统1.2.2 SQL语言1.2.3 数据库访问接口 1.3 什么是MySQL 二、数据库的基本操作2.1 数据库创建和删除2.2 数据库存储引擎2.2.1 MySQL存储引擎简介2.2.2 InnoDB存储引擎2.2.3 MyISAM存储引擎2.2.4 存储引…...
[ 应急响应进阶篇-2 ] Linux创建后门并进行应急处置-1:超级用户帐号后门
🍬 博主介绍 👨🎓 博主介绍:大家好,我是 _PowerShell ,很高兴认识大家~ ✨主攻领域:【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 🎉点赞➕评论➕收藏 养成习…...
【无人机/平衡车/机器人】详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波
详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波 效果: 更多单片机项目,单片机项目合集列表目录与专栏说明: 单片机项目合集列表与专栏说明——Excel合集列表目录查阅(持续更新)-CSDN博客编辑https://archie.blog.csdn.net/article/details/142381401https:/…...
数据结构-8.Java. 七大排序算法(上篇)
本篇博客给大家带来的是排序的知识点, 由于时间有限, 分两天来写, 上篇主要实现 前四种排序算法: 直接插入, 希尔, 选择, 堆排。 文章专栏: Java-数据结构 若有问题 评论区见 欢迎大家点赞 评论 收藏 分享 如果你不知道分享给谁,那就分享给薯条. 你们的支持是我不断创作的动力 …...
YOLOV5/rknn生成可执行文件部署在RK3568上
接上一篇文章best-sim.rknn模型生成好后,我们要将其转换成可执行文件运行在RK3568上,这一步需要在rknpu上进行,在强调一遍!!rknpu的作用是可以直接生成在开发板上运行的程序 退出上一步的docker环境 exit1.复制best-…...
java http body的格式 application/x-www-form-urlencoded不支持文件上传
在Java中,HTTP请求的body部分可以包含多种格式的数据,主要包括以下几种: application/x-www-form-urlencoded:这种格式将数据编码成键值对的形式,键和值都进行了URL编码,键值对之间用&符号连接。…...
GPU服务器厂家:为什么要选择 GPU 服务器?
文章来源于百家号:GPU服务器厂家 嘿,各位小伙伴们!今天咱来聊聊为啥要选择 GPU 服务器,特别是定制化的那种哦。 你们知道吗?现在定制化 GPU 服务器那可是超火的,简直就是科研项目的超强 “外挂”&#x…...
Python操作neo4j库py2neo使用之py2neo 删除及事务相关操作(三)
Python操作neo4j库py2neo使用之py2neo 删除及事务相关操作(三) py2neo 删除 1、连接数据库 from py2neo import Graph graph Graph("bolt://xx.xx.xx.xx:7687", auth(user, pwd), nameneo4j)2、删除节点 # 删除单个节点 node graph.node…...
Idea忽略提交文件、Idea设置文件隐藏、Idea提交时隐藏部分文件、git提交时忽略文件
文章目录 一、在idea中commit文件时隐藏文件方式一:创建.gitignore文件(推荐)方式二:通过File Types设置隐藏文件方式三:通过Git配置忽略文件(不推荐)总结 二、可能遇到的问题2.1、.gitigno…...
python如何使用spark操作hive
文章目录 1、服务启动2、修改配置3、验证4、开发环境编写代码操作hive 1、服务启动 # 启动hdfs和yarn start-all.sh # 日志服务也需要启动一下 mapred --daemon start historyserver # 启动spark的日志服务 /opt/installs/spark/sbin/start-history-server.sh #启动hive的meta…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
