深度学习使用LSTM实现时间序列预测
大家好,LSTM是一种特殊的循环神经网络(RNN)架构,它被设计用来解决传统RNN在处理长序列数据时的梯度消失和梯度爆炸问题,特别是在时间序列预测、自然语言处理和语音识别等领域中表现出色。LSTM的核心在于其独特的门控机制,这些门控机制允许网络动态地决定信息的流动,从而能够学习到长期依赖关系。本文将从背景与原理、数据预处理、LSTM模型构建与训练等方面进行介绍,用LSTM预测未来一周的天气变化。
1. 基本原理
简单来说,LSTM 是 RNN 的一种,它通过引入“记忆单元”来捕捉长时间的依赖关系,使其在处理长期依赖问题时非常有效。对于天气数据的预测,LSTM特别适用,因为天气数据是高度时序依赖的。例如,某一天的温度和湿度可能会受到前几天数据的影响,这些“依赖关系”是LSTM所擅长捕捉的。
LSTM 用于解决普通RNN在处理长序列时常见的梯度消失和梯度爆炸问题,其核心特点是引入了“记忆单元”(cell state)和三个“门”机制(遗忘门、输入门、输出门)来控制信息的流动。
1.1 基本结构
LSTM单元的主要结构包括:
-
记忆单元(Cell State) :用于存储长期的信息。记忆单元在时间上连接,不同时间步的数据可以选择性地被保留或丢弃,这使得LSTM可以“记住”长期的信息。
-
隐藏状态(Hidden State) :与普通RNN的隐藏状态类似,用于存储短期信息,但在LSTM中,隐藏状态还依赖于记忆单元的状态。
1.2 三个“门”机制
LSTM中的三个门分别用于控制信息的“遗忘”“更新”和“输出”:
遗忘门的目的是决定哪些信息应该从单元状态中被遗忘或丢弃。它基于当前的输入和前一个时间步的隐藏状态来计算。遗忘门的输出是一个介于0和1之间的值,接近1表示“保留信息”,接近0表示“遗忘信息”。
输入门包含两部分:一部分决定是否更新单元状态,另一部分决定新输入的信息。输入门由两组sigmoid层和一个tanh层组成。决定当前输入信息是否写入记忆单元中,用于更新记忆内容。输入门同样通过sigmoid函数生成一个0到1的值,表示当前输入数据的重要性。
输出门的目的是决定当前的单元状态如何贡献到下一个隐藏状态,它基于当前的单元状态和前一个时间步的隐藏状态来计算。
1.3 LSTM 整体流程
通过上述过程,LSTM在每个时间步的操作可以概括为以下步骤:
-
计算遗忘门,决定旧记忆单元信息的遗忘比例。
-
计算输入门和候选记忆单元,决定新信息对记忆单元的更新比例。
-
更新记忆单元,结合遗忘门和输入门的结果,形成新的记忆状态。
-
计算输出门,控制隐藏状态的生成。
-
根据记忆单元和输出门,计算新的隐藏状态,并传递给下一个时间步。
通过这种记忆单元状态的更新与控制机制,LSTM能够有效地在较长的序列中保持记忆,从而适用于时间序列预测等长时序依赖的任务。
2. 数据预处理与虚拟数据集生成
实际数据非常大不利于学习,为了更好理解算法本身,构建一个虚拟天气数据集,包括温度、湿度、风速等变量。假设我们有一年的历史数据,每日更新。我们将模拟这些数据并将其用于训练和测试。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt# 生成虚拟天气数据集
np.random.seed(42)
days = 365 # 一年数据
temperature = 30 + 5 * np.sin(np.linspace(0, 2 * np.pi, days)) + np.random.normal(0, 1, days)
humidity = 50 + 10 * np.sin(np.linspace(0, 2 * np.pi, days)) + np.random.normal(0, 2, days)
wind_speed = 10 + 3 * np.sin(np.linspace(0, 2 * np.pi, days)) + np.random.normal(0, 1, days)data = pd.DataFrame({'temperature': temperature,'humidity': humidity,'wind_speed': wind_speed
})data.head()
在训练模型之前,需要将数据标准化,以便LSTM能够更有效地学习数据特征。
from sklearn.preprocessing import MinMaxScalerscaler = MinMaxScaler(feature_range=(0, 1))
data_scaled = scaler.fit_transform(data)
3. LSTM模型构建与训练
3.1 数据切分
数据切分是机器学习中的一个重要步骤,它涉及将数据集划分为不同的部分,以便于模型的训练和验证。将数据分为训练集和测试集(80%训练,20%测试):
train_size = int(len(data_scaled) * 0.8)
train_data = data_scaled[:train_size]
test_data = data_scaled[train_size:]def create_sequences(data, seq_length):xs, ys = [], []for i in range(len(data) - seq_length):x = data[i:i+seq_length]y = data[i+seq_length]xs.append(x)ys.append(y)return np.array(xs), np.array(ys)seq_length = 7 # 用前7天的数据预测第8天
X_train, y_train = create_sequences(train_data, seq_length)
X_test, y_test = create_sequences(test_data, seq_length)
3.2 模型定义
导入PyTorch及其相关模块,使用PyTorch构建LSTM模型,创建一个继承自torch.nn.Module
的类,并在其中定义LSTM层和其他必要的层。在模型类的构造函数中初始化LSTM层和其他层,定义模型如何根据输入数据进行前向传播。
import torch
import torch.nn as nnclass WeatherLSTM(nn.Module):def __init__(self, input_size, hidden_size, output_size, num_layers=1):super(WeatherLSTM, self).__init__()self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)def forward(self, x):out, _ = self.lstm(x)out = self.fc(out[:, -1, :])return out# 定义超参数
input_size = 3 # 特征数:温度、湿度、风速
hidden_size = 64
output_size = 3
num_layers = 1model = WeatherLSTM(input_size, hidden_size, output_size, num_layers)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
3.3 模型训练
import torch.optim as optimnum_epochs = 100
for epoch in range(num_epochs):model.train()optimizer.zero_grad()outputs = model(torch.Tensor(X_train))loss = criterion(outputs, torch.Tensor(y_train))loss.backward()optimizer.step()if (epoch+1) % 10 == 0:print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
4. 预测与可视化分析
模型训练完成后,对测试集进行预测,使用图形展示结果。
model.eval()
with torch.no_grad():predicted = model(torch.Tensor(X_test)).detach().numpy()predicted = scaler.inverse_transform(predicted)actual = scaler.inverse_transform(y_test)# 转为DataFrame便于可视化
predicted_df = pd.DataFrame(predicted, columns=['temperature', 'humidity', 'wind_speed'])
actual_df = pd.DataFrame(actual, columns=['temperature', 'humidity', 'wind_speed'])
对模型预测结果进行展示,具体包括以下信息:
-
温度预测结果:展示LSTM对温度的预测与实际值的比较。
-
湿度预测结果:展示LSTM对湿度的预测与实际值的差距。
-
风速预测结果:分析风速的预测效果。
-
多特征趋势对比:对比所有特征在不同时间段的预测效果。
colors = ['#1f77b4', '#ff7f0e'] # 蓝色:实际值,橙色:预测值
fig, axes = plt.subplots(3, 1, figsize=(12, 10))# 标题和字体设置
fig.suptitle('Weather Prediction Using LSTM', fontsize=16, weight='bold')# 温度预测图
axes[0].plot(actual_df['temperature'], color=colors[0], label='Actual Temperature', linewidth=1.5)
axes[0].plot(predicted_df['temperature'], color=colors[1], linestyle='--', label='Predicted Temperature', linewidth=1.5)
axes[0].set_title('Temperature Prediction', fontsize=14, weight='bold')
axes[0].set_ylabel('Temperature (°C)', fontsize=12)
axes[0].legend(fontsize=10, loc='upper right')
axes[0].grid(alpha=0.3)# 湿度预测图
axes[1].plot(actual_df['humidity'], color=colors[0], label='Actual Humidity', linewidth=1.5)
axes[1].plot(predicted_df['humidity'], color=colors[1], linestyle='--', label='Predicted Humidity', linewidth=1.5)
axes[1].set_title('Humidity Prediction', fontsize=14, weight='bold')
axes[1].set_ylabel('Humidity (%)', fontsize=12)
axes[1].legend(fontsize=10, loc='upper right')
axes[1].grid(alpha=0.3)# 风速预测图
axes[2].plot(actual_df['wind_speed'], color=colors[0], label='Actual Wind Speed', linewidth=1.5)
axes[2].plot(predicted_df['wind_speed'], color=colors[1], linestyle='--', label='Predicted Wind Speed', linewidth=1.5)
axes[2].set_title('Wind Speed Prediction', fontsize=14, weight='bold')
axes[2].set_ylabel('Wind Speed (km/h)', fontsize=12)
axes[2].set_xlabel('Days', fontsize=12)
axes[2].legend(fontsize=10, loc='upper right')
axes[2].grid(alpha=0.3)# 调整布局并显示
plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.show()
使用了三个基本的折线图来对比LSTM模型在温度、湿度和风速预测方面的实际值和预测值:
温度预测的图形展示了LSTM模型对温度时间序列的捕捉能力。如果预测线能够紧密跟随实际温度曲线,说明模型能较好地捕捉温度的变化趋势。如果偏差较大,则需要调整模型复杂度或序列长度。
湿度预测的图形反映了LSTM对湿度时序变化的拟合效果。通常湿度变化较温度更不规则,因此湿度预测的误差可能更大,这提示我们可以考虑将湿度数据的平滑度处理,减少噪声。
风速图形反映了模型在风速数据上的预测效果。如果预测值偏差较大,可能说明风速的时序特征在当前的LSTM结构下未能得到充分捕捉,这时可以尝试增加风速数据的周期性特征,或调整输入序列长度。
5. 模型优化方向
LSTM模型的性能在很大程度上依赖于参数设置和数据处理,下面论述一些比较重要的方面。
5.1 隐藏层数量和单元数优化
在 LSTM 中,隐藏层数量和每一层的隐藏单元数会影响模型的复杂度。通常情况下,较高的隐藏单元数和更多的LSTM层能够捕捉更复杂的时序特征,但过多的隐藏单元数和层数可能导致过拟合。因此可以尝试:
-
单层LSTM vs 多层LSTM:从1层开始,如果模型效果不理想可以尝试增加到2-3层,逐渐观察效果的提升。
-
单元数(Hidden Units):一般来说,选择16、32、64、128等值逐步增加,同时注意训练时间和过拟合的风险。
5.2 学习率调整
学习率是优化器的重要参数之一,它决定了每次参数更新的步长。在训练过程中,可以使用学习率衰减策略,即随着训练轮次增加逐步减小学习率,帮助模型在接近最优点时更加平稳地收敛。常见策略:
-
Step Decay:每隔一定轮次将学习率缩小至原来的某个比例(如0.1倍)。
-
Exponential Decay:每次更新时将学习率按指数函数递减。
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
for epoch in range(num_epochs):# 模型训练代码...optimizer.step()scheduler.step() # 调整学习率
5.3 正则化手段
LSTM 模型可能会因数据有限而出现过拟合问题,适当的正则化手段可以提高模型的泛化能力:
-
Dropout:LSTM层中添加dropout可以有效防止过拟合。
-
L2正则化:在损失函数中添加L2惩罚项,限制权重的过大波动。
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, dropout=0.2)
5.4 批量大小调整
批量大小决定了每次训练中使用的数据量,合适的批量大小(如32、64、128等)在计算效率和泛化性能上会有较好的平衡。对于时间序列数据,一般来说,较小的批量可以帮助捕捉更多的特征信息。
6. 调参流程
在优化模型时,系统化的调参流程能够提高效率并找到最佳参数组合。推荐的几个调参方式:
-
确定基本模型结构:先从简单的LSTM结构入手,比如1层LSTM,16个隐藏单元,学习率0.01。
-
逐步增加复杂度:根据模型初始结果,逐渐增加隐藏单元数或层数,并观察训练集和测试集的误差变化。
-
优化学习率和批量大小:通过实验不同的学习率(0.01,0.001等)和批量大小,找到误差最小且收敛速度较快的组合。
-
添加正则化项:当模型效果较好但存在过拟合时,添加正则化手段(如Dropout)并调整比例(如0.1、0.2等)。
-
迭代实验:通过实验记录并分析结果曲线,继续微调参数,直至得到满意的结果。
相关文章:

深度学习使用LSTM实现时间序列预测
大家好,LSTM是一种特殊的循环神经网络(RNN)架构,它被设计用来解决传统RNN在处理长序列数据时的梯度消失和梯度爆炸问题,特别是在时间序列预测、自然语言处理和语音识别等领域中表现出色。LSTM的核心在于其独特的门控机…...

Vue第一篇:组件模板总结
前言 本文希望读者有一定的Vue开发经验,样例采用vue中的单文件组件,也是我的个人笔记,欢迎一起进步 必须有根元素 这是一个最简单的vue单文件组件,<template></template>被称为模板,模板中必须有一个根元素…...

时钟使能、
时钟使能 如果正确使用,时钟使能能够显著地降低系统功耗,同时对面积或性能的影响极小。但是如果不正确地使用时钟使能, 可能会造成下列后果: • 面积增大 • 密度减小 • 功耗上升 • 性能下降 在许多使用大量控制集的…...

1. Autogen官网教程 (Introduction to AutoGen)
why autogen The whole is greater than the sum of its parts.(整体的功能或价值往往超过单独部分简单相加的总和。) -Aristotle autogen 例子 1. 导入必要的库 首先,导入os库和autogen库中的ConversableAgent类。 import os from autogen import Conversable…...

开源账目和账单
开源竞争: 开源竞争(当你无法彻底掌握技术的时候,你就开源这个技术,让更多的人了解这个技术,形成更多的技术依赖,你会说这不就是在砸罐子吗?一个行业里面总会有人砸罐子,你不如先砸…...

vue2面试题10|[2024-11-24]
问题1:vue设置代理 如果你的前端应用和后端API服务器没有运行在同一个主机上,你需要在开发环境下将API请求代理到API服务器。这个问题可以通过vue.config.js中的devServer.proxy选项来配置。 1.devServer.proxy可以是一个指向开发环境API服务器的字符串&…...

c语言与c++到底有什么区别?
成长路上不孤单😊😊😊😊😊😊 【14后😊///C爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】 今日分享关于c语言与c区别的相关内容! 关…...

云计算-华为HCIA-学习笔记
笔者今年7月底考取了华为云计算方向的HCIE认证,回顾从IA到IE的学习和项目实战,想整合和分享自己的学习历程,欢迎志同道合的朋友们一起讨论! 第二章:服务器基础 服务器是什么? 服务器本质上就是个性能超强的…...

优先算法 —— 双指针系列 - 复写零
目录 1. 复写零 2. 算法原理 一般情况下 改为就地操作:从左到右(错误) 从右到左 总结一下解决方法: 如何找到最后一个复写的数 特殊情况 完整步骤: 3. 代码 1. 复写零 题目链接:1089. 复写零 - 力…...

初识Linux—— 基本指令(下)
前言: 本篇继续来学习Linux的基础指令,继续加油!!! 本篇文章对于图片即内容详解,已同步到本人gitee:Linux学习: Linux学习与知识讲解 Linux指令 1、查看文件内容的指令 cat cat 查看文件…...

esayexcel进行模板下载,数据导入,验证不通过,错误信息标注在excel上进行返回下载
场景:普普通通模板下载,加数据导入,分全量和增量,预计20w数据,每一条数据校验,前后端代码贴上(代码有删改,关键代码都有,好朋友们自己取舍,代码一股脑贴上了&…...

服务器数据恢复—raid5阵列热备盘上线失败导致EXT3文件系统不可用的数据恢复案例
服务器数据恢复环境: 两组分别由4块SAS硬盘组建的raid5阵列,两组阵列划分的LUN组成LVM架构,格式化为EXT3文件系统。 服务器故障: 一组raid5阵列中的一块硬盘离线。热备盘自动上线替换离线硬盘,但在热备盘上线同步数据…...

《Qt Creator:人工智能时代的跨平台开发利器》
《Qt Creator:人工智能时代的跨平台开发利器》 一、Qt Creator 简介(一)功能和优势(二)快捷键与效率提升(三)跨平台支持(四)工具介绍与使用主要特性:使用步骤…...

AG32既可以做MCU,也可以仅当CPLD使用
Question: AHB总线上的所有外设都需要像ADC一样,通过cpld处理之后才能使用? Reply: 不用。 除了ADC外,其他都是 mcu可以直接配置使用的。 Question: DMA和CMP也不用? Reply: DMA不用。 ADC/DAC/CMP 用。 CMP 其实配置好后,可以直…...

51c自动驾驶~合集31
我自己的原文哦~ https://blog.51cto.com/whaosoft/12121357 #大语言模型会成为自动驾驶的灵丹妙药吗 人工智能(AI)在自动驾驶(AD)研究中起着至关重要的作用,推动其向智能化和高效化发展。目前AD技术的发展主要遵循…...

2023年3月GESPC++一级真题解析
一、单选题(每题2分,共30分) 题目123456789101112131415答案BAACBDDAADBCDBC 1.以下不属于计算机输入设备的有( )。 A .键盘 B .音箱 C .鼠标 D .传感器 【答案】 …...

linux NFS
什么是NFS NFS是Network File System的缩写,即网络文件系统。一种使用于分散式 文件协议通过网络让不同的机器、不同的操作系统能够分享个人数据,让应用 程序通过网络可以访问位于服务器磁盘中的数据。NFS在文件传送或信息传送 的过程中,依赖…...

查看浏览器的请求头
爬虫时用到了请求头,虽然可以用网上公开的,但是还是想了解一下本机浏览器的。以 Edge 为例,其余浏览器通用。 打开浏览器任一网页,按F12打开DevTools;或鼠标右键,选择“检查”。首次打开界面应该显示在网页…...

【JavaEE进阶】 JavaScript
本节⽬标 了解什么是JavaScript, 学习JavaScript的常⻅操作, 以及使⽤JQuery完成简单的⻚⾯元素操作. 一. 初识 JavaScript 1.JavaScript 是什么 JavaScript (简称 JS), 是⼀个脚本语⾔, 解释型或即时编译型的编程语⾔. 虽然它是作为开发Web⻚⾯的脚本语⾔⽽出名,…...

后端接受大写参数(亲测能用)
重要点引入包别引用错了 import com.fasterxml.jackson.databind.annotation.JsonSerialize; import com.fasterxml.jackson.annotation.JsonProperty; import lombok.Data;JsonSerialize Data public class Item {JsonProperty(value "Token")private String token…...

Unity ShaderLab --- 实现局部透明
首先准备一张局部透明度的贴图 实现局部透明原理: 采样准备好的贴图,在片元着色中,将返回颜色的a值乘上采样后的a值 代码: fixed4 frag (v2f i) : SV_Target{fixed4 col i.color;col.a * tex2D(_MainTex, i.texcoord).a;return…...

Edify 3D: Scalable High-Quality 3D Asset Generation 论文解读
目录 一、概述 二、相关工作 1、三维资产生成 2、多视图下的三维重建 3、纹理和材质生成 三、Edify 3D 1、文本生成多视角图像的扩散模型 2、文本和多视角图像生成法线图像的ControlNet 3、重建与渲染模型 4、多视角高分辨率RGB图像生成 四、训练 1、训练过程 2、…...

银河麒麟v10 x86架构二进制方式kubeadm+docker+cri-docker搭建k8s集群(证书有效期100年) —— 筑梦之路
环境说明 master:192.168.100.100 node: 192.168.100.101 kubeadm 1.31.2 (自编译二进制文件,证书有效期100年) 银河麒麟v10 sp2 x86架构 内核版本:5.4.x 编译安装 cgroup v2启用 docker版本:27.x …...

Python浪漫之画明亮的月亮
目录 1、效果展示 2、完整版代码 1、效果展示 2、完整版代码 import turtledef draw_moon():# 设置画布turtle.bgcolor("black") # 背景颜色为黑色turtle.speed(10) # 设置绘制速度# 绘制月亮的外圈turtle.penup()turtle.goto(0, -100) # 移动到起始…...

【前端】JavaScript 中的函数嵌套:从基础到深度应用的全面指南
博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: 前端 文章目录 💯前言💯什么是函数嵌套示例代码 💯函数嵌套的意义与优势1. 封装性与模块化2. 闭包的实现与应用3. 回调与高阶函数4. 工厂模式 💯函数嵌套的不同应用场景…...

微信小程序条件渲染与列表渲染的全面教程
微信小程序条件渲染与列表渲染的全面教程 引言 在微信小程序的开发中,条件渲染和列表渲染是构建动态用户界面的重要技术。通过条件渲染,我们可以根据不同的状态展示不同的内容,而列表渲染则使得我们能够高效地展示一组数据。本文将详细讲解这两种渲染方式的用法,结合实例…...

全面击破工程级复杂缓存难题
目录 一、走进业务中的缓存 (一)本地缓存 (二)分布式缓存 二、缓存更新模式分析 (一)Cache Aside Pattern(旁路缓存模式) 读操作流程 写操作流程 流程问题思考 问题1&#…...

python安装包中的一些问题(三):加载 matplotlib 的过程中,调用了 Pillow(PIL 库)时发生了错误
报错: runfile(/Volumes/Expansion/Stuttgart/code_run/glacier_map_hugonnet/test_image_cut.py, wdir/Volumes/Expansion/Stuttgart/code_run/glacier_map_hugonnet) Traceback (most recent call last): File /opt/anaconda3/lib/python3.11/site-packages/spyd…...

AWTK-WEB 快速入门(1) - C 语言应用程序
先安装 AWTK Designer 用 AWTK Designer 新建一个应用程序 2.1. 新建应用程序 这里假设应用程序的名称为 AwtkApplicationC,后面会用到,如果使用其它名称,后面要做相应修改。 在窗口上放置一个按钮将按钮的名称改为 “close”将按钮的文本改…...

【Spiffo】环境配置:VScode+Windows开发环境
摘要: 在Linux下直接开发有时候不习惯快捷键和操作逻辑,用Windows的话其插件和工具都更齐全、方便,所以配置一个Windows的开发环境能一定程度提升效率。 思路: 自己本地网络内远程连接自己的虚拟机(假定用的是虚拟机…...