pytorch 和tensorflow loss.item()` 只能用于只有一个元素的张量. 防止显存爆炸
`loss.item()` 是 PyTorch 中的一个方法,它用于从一个只包含单个元素的张量(tensor)中提取出该元素的值,并将其转换为一个 Python 标量(即 int 或 float 类型)。这个方法在训练神经网络时经常用到,尤其是在计算损失函数(loss)时,用于获取损失值的具体数值。
以下是一些关于 `loss.item()` 的关键点:
1. **提取单个元素**:`loss.item()` 只能用于只有一个元素的张量。如果张量包含多个元素,使用 `loss.item()` 会引发错误,提示“only one element tensors can be converted to Python scalars”。
2. **防止显存爆炸**:在训练过程中,如果直接将损失值累加(例如 `loss_sum += loss`),由于 PyTorch 的动态图机制,这会导致显存不断增加,因为累加的损失值会被视为计算图的一部分。为了避免这个问题,可以使用 `loss.item()` 来获取损失值的标量,然后进行累加,这样可以防止显存的无限增长。
3. **数据并行问题**:在使用多GPU训练时,如果使用 `DataParallel`,每个 GPU 上的损失值可能不同,直接使用 `loss.item()` 可能会导致数据混乱。在这种情况下,可以先使用 `torch.mean()` 对所有 GPU 上的损失值进行平均,然后再调用 `loss.item()` 获取平均后的损失值。
4. **梯度计算**:在使用 `loss.item()` 之前,应该避免在反向传播之前调用它,因为这可能会跳过一些重要的梯度计算。
5. **浮点数精度问题**:由于浮点数的精度问题,`loss.item()` 返回的结果可能与预期不符。在这种情况下,可以尝试使用其他损失函数或者对数据进行归一化处理。
总结来说,`loss.item()` 是一个非常有用的函数,用于在 PyTorch 中获取损失值的具体数值,但在使用时需要注意上述的陷阱和注意事项。
相关文章:
pytorch 和tensorflow loss.item()` 只能用于只有一个元素的张量. 防止显存爆炸
loss.item() 是 PyTorch 中的一个方法,它用于从一个只包含单个元素的张量(tensor)中提取出该元素的值,并将其转换为一个 Python 标量(即 int 或 float 类型)。这个方法在训练神经网络时经常用到,…...
链表刷题|判断回文结构
题目来自于牛客网,本文章仅记录学习过程的做题理解,便于梳理思路和复习 我做题喜欢先把时间复杂度和空间复杂度放一边,先得有大概的解决方案,最后如果时间或者空间超了再去优化即可。 思路一:要判断是否为回文结构则…...
海盗王集成网关和商城服务端功能golang版
之前用golang把海盗王的商城服务端和网关服务端都重写了一次。 后来在同时开启网关和商城服务时,发现窗口数量有点多,有时要找到商城窗口比较麻烦。 既然2个都是用golang govcl写的,是不是可以集成到一起,方便使用呢?…...
SCI 中科院分区中位于4区,JCR分区位于Q2 是什么水平?
环境: ACM Transactions on Interactive Intelligent Systems 《Acm Transactions On Interactive Intelligent Systems》(《交互式智能系统上的 Acm 事务》)是一本由ASSOC COMPUTING MACHINERY (ACM)出版的Computer Interaction-Computer Science-Human学术刊物&…...
微知-Mellanox网卡的另外一种升级方式mlxup?(mlxup -d xxx -i xxx.bin)
背景 一般升级Mellanox网卡使用flint,还有另外一种叫做mlxup。 NVIDIA 提供了两种固件工具来更新和查询适配器固件: MLXUP - 固件更新和查询实用程序。该实用程序允许扫描服务器计算机以查找可用的 NVIDIA 适配器,并指示每个适配器是否需要…...
《Shader入门精要》透明效果
代码以及实例图可以看github :zaizai77/Shader-Learn: 实现一些书里讲到的shader 在实时渲染中要实现透明效果,通常会在渲染模型时控制它的透明通道(Alpha Channel)。当开启透明混合后,当一个物体被渲染到屏幕上时&…...
Linux之SELinux与防火墙
一、SELinux的说明 开发背景与目的: SELinux由美国国家安全局(NSA)开发,旨在避免资源的误用。传统的Linux基于自主访问控制(DAC),通过判断进程所有者/用户组与文件权限来控制访问,对…...
深度学习使用LSTM实现时间序列预测
大家好,LSTM是一种特殊的循环神经网络(RNN)架构,它被设计用来解决传统RNN在处理长序列数据时的梯度消失和梯度爆炸问题,特别是在时间序列预测、自然语言处理和语音识别等领域中表现出色。LSTM的核心在于其独特的门控机…...
Vue第一篇:组件模板总结
前言 本文希望读者有一定的Vue开发经验,样例采用vue中的单文件组件,也是我的个人笔记,欢迎一起进步 必须有根元素 这是一个最简单的vue单文件组件,<template></template>被称为模板,模板中必须有一个根元素…...
时钟使能、
时钟使能 如果正确使用,时钟使能能够显著地降低系统功耗,同时对面积或性能的影响极小。但是如果不正确地使用时钟使能, 可能会造成下列后果: • 面积增大 • 密度减小 • 功耗上升 • 性能下降 在许多使用大量控制集的…...
1. Autogen官网教程 (Introduction to AutoGen)
why autogen The whole is greater than the sum of its parts.(整体的功能或价值往往超过单独部分简单相加的总和。) -Aristotle autogen 例子 1. 导入必要的库 首先,导入os库和autogen库中的ConversableAgent类。 import os from autogen import Conversable…...
开源账目和账单
开源竞争: 开源竞争(当你无法彻底掌握技术的时候,你就开源这个技术,让更多的人了解这个技术,形成更多的技术依赖,你会说这不就是在砸罐子吗?一个行业里面总会有人砸罐子,你不如先砸…...
vue2面试题10|[2024-11-24]
问题1:vue设置代理 如果你的前端应用和后端API服务器没有运行在同一个主机上,你需要在开发环境下将API请求代理到API服务器。这个问题可以通过vue.config.js中的devServer.proxy选项来配置。 1.devServer.proxy可以是一个指向开发环境API服务器的字符串&…...
c语言与c++到底有什么区别?
成长路上不孤单😊😊😊😊😊😊 【14后😊///C爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】 今日分享关于c语言与c区别的相关内容! 关…...
云计算-华为HCIA-学习笔记
笔者今年7月底考取了华为云计算方向的HCIE认证,回顾从IA到IE的学习和项目实战,想整合和分享自己的学习历程,欢迎志同道合的朋友们一起讨论! 第二章:服务器基础 服务器是什么? 服务器本质上就是个性能超强的…...
优先算法 —— 双指针系列 - 复写零
目录 1. 复写零 2. 算法原理 一般情况下 改为就地操作:从左到右(错误) 从右到左 总结一下解决方法: 如何找到最后一个复写的数 特殊情况 完整步骤: 3. 代码 1. 复写零 题目链接:1089. 复写零 - 力…...
初识Linux—— 基本指令(下)
前言: 本篇继续来学习Linux的基础指令,继续加油!!! 本篇文章对于图片即内容详解,已同步到本人gitee:Linux学习: Linux学习与知识讲解 Linux指令 1、查看文件内容的指令 cat cat 查看文件…...
esayexcel进行模板下载,数据导入,验证不通过,错误信息标注在excel上进行返回下载
场景:普普通通模板下载,加数据导入,分全量和增量,预计20w数据,每一条数据校验,前后端代码贴上(代码有删改,关键代码都有,好朋友们自己取舍,代码一股脑贴上了&…...
服务器数据恢复—raid5阵列热备盘上线失败导致EXT3文件系统不可用的数据恢复案例
服务器数据恢复环境: 两组分别由4块SAS硬盘组建的raid5阵列,两组阵列划分的LUN组成LVM架构,格式化为EXT3文件系统。 服务器故障: 一组raid5阵列中的一块硬盘离线。热备盘自动上线替换离线硬盘,但在热备盘上线同步数据…...
《Qt Creator:人工智能时代的跨平台开发利器》
《Qt Creator:人工智能时代的跨平台开发利器》 一、Qt Creator 简介(一)功能和优势(二)快捷键与效率提升(三)跨平台支持(四)工具介绍与使用主要特性:使用步骤…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
