学习threejs,使用设置bumpMap凹凸贴图创建褶皱,实现贴图厚度效果
👨⚕️ 主页: gis分享者
👨⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅!
👨⚕️ 收录于专栏:threejs gis工程师
文章目录
- 一、🍀前言
- 1.1 ☘️THREE.MeshPhongMaterial高光材质
- 1.2 bumpMap 凹凸贴图
- 二、🍀使用设置bumpMap凹凸贴图创建褶皱,实现贴图厚度效果
- 1. ☘️实现思路
- 2. ☘️代码样例
一、🍀前言
本文详细介绍如何基于threejs在三维场景中使用设置bumpMap凹凸贴图创建褶皱,实现贴图厚度效果,亲测可用。希望能帮助到您。一起学习,加油!加油!
1.1 ☘️THREE.MeshPhongMaterial高光材质
THREE.MeshPhongMaterial 是 Three.js 中的一种材质类型,用于模拟物体表面的光照效果,包括漫反射(diffuse)和镜面反射(specular)。这种材质遵循 Phong 反射模型,可以模拟出光滑表面的高光效果,因此非常适合用来渲染金属、塑料、瓷器等具有光泽表面的物体。
常用属性:
THREE.MeshPhongMaterial 继承自 THREE.Material,并具有一些特定的属性,可以用来控制材质的外观:
color:材质的基本颜色,默认为白色(0xffffff)。可以是一个整数,表示十六进制颜色值。
map:基础颜色贴图,可以用来替代材质的颜色。可以是一个 THREE.Texture 对象。
alphaMap:透明度贴图,可以用来定义材质的透明度。可以是一个 THREE.Texture 对象。
emissive:自发光颜色,默认为黑色(0x000000)。即使在没有光源的情况下,也会显示这个颜色。
emissiveMap:自发光贴图,可以用来定义自发光的颜色。可以是一个 THREE.Texture 对象。
specular:高光颜色,默认为白色(0x111111)。高光颜色定义了镜面反射的颜色。
shininess:高光强度,默认为 30。高光强度定义了高光区域的锐度,数值越高,高光越集中。
opacity:材质的全局透明度,默认为 1(不透明)。
transparent:是否开启透明模式,默认为 false。如果设置为 true,则需要设置 opacity 或者使用 alphaMap。
side:指定材质在哪一面渲染,可以是 THREE.FrontSide(正面)、THREE.BackSide(背面)或 THREE.DoubleSide(双面)。
wireframe:是否启用线框模式,默认为 false。
visible:是否渲染该材质,默认为 true。
depthTest:是否进行深度测试,默认为 true。
depthWrite:是否写入深度缓冲区,默认为 true。
blending:混合模式,默认为 THREE.NormalBlending。可以设置为 THREE.AdditiveBlending、THREE.SubtractiveBlending 等。
vertexColors:是否启用顶点颜色,默认为 THREE.NoColors。可以设置为 THREE.VertexBasicColors、THREE.VertexColors 或 THREE.FaceColors。
flatShading:是否使用平滑着色,默认为 false。如果设置为 true,则每个面片都将使用平均法线。
envMap:环境贴图,可以用来模拟环境光照。可以是一个 THREE.Texture 对象。
reflectivity:环境光反射率,默认为 1。
refractionRatio:折射率,默认为 0.98。
combine:环境贴图的组合方式,默认为 THREE.MixOperation。
bumpMap:凹凸贴图,可以用来模拟表面细节。可以是一个 THREE.Texture 对象。
bumpScale:凹凸贴图的比例,默认为 1。
normalMap:法线贴图,可以用来模拟表面细节。可以是一个 THREE.Texture 对象。
normalScale:法线贴图的比例,默认为 Vector2(1, 1)。
displacementMap:置换贴图,可以用来改变表面的高度。可以是一个 THREE.Texture 对象。
displacementScale:置换贴图的比例,默认为 1。
displacementBias:置换贴图的偏移,默认为 0。
1.2 bumpMap 凹凸贴图
凹凸贴图用于为材质增加厚度,在三维环境中使表面产生凹凸不平的视觉效果。
它主要的原理是通过改变表面光照的法线。凹凸贴图是一种灰度图像素的密集程度定义的是凹凸的程度。凹凸贴图只包含像素的相对高度,不包含倾斜方向的信息,凹凸贴图不会改变物体的形状。
二、🍀使用设置bumpMap凹凸贴图创建褶皱,实现贴图厚度效果
1. ☘️实现思路
- 1、初始化renderer渲染器
- 2、初始化Scene三维场景
- 3、初始化camera相机,定义相机位置 camera.position.set,设置相机方向camera.lookAt
- 4、初始化THREE.AmbientLight环境光源,scene场景加入环境光源,初始化THREE.DirectionalLight平行光源,设置平行光源位置,设置平行光源投影,scene添加平行光源。
- 5、加载几何模型:创建THREE.AxesHelper坐标辅助工具,创建THREE.PlaneBufferGeometry平面几何体、THREE.GridHelper地板割线,scene场景中加入创建的平面几何体和地板割线。创建墙纹理贴图对象normal和墙纹理凹凸贴图对象bump,根据创建的墙纹理创建两个THREE.MeshPhongMaterial高光材质对象material1、material2,创建立方体THREE.BoxGeometry对象geometry,根据立方体geometry和材质THREE.MeshPhongMaterial对象创建两个THREE.Mesh网格对象cube1、cube2并设置位置,scene场景中加入cube1和cube2。具体实现参考代码样例。
- 6、加入gui、controls控制,加入stats监控器,监控帧数信息。
2. ☘️代码样例
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><title>learn52(使用设置BUMPMAP凹凸贴图创建褶皱,实现贴图厚度效果)</title><script src="lib/threejs/127/three.js-master/build/three.js"></script><script src="lib/threejs/127/three.js-master/examples/js/controls/OrbitControls.js"></script><script src="lib/threejs/127/three.js-master/examples/js/libs/stats.min.js"></script><script src="lib/threejs/127/three.js-master/examples/js/libs/dat.gui.min.js"></script><script src="lib/js/Detector.js"></script>
</head>
<style type="text/css">html, body {margin: 0;height: 100%;}canvas {display: block;}
</style>
<body onload="draw()">
</body>
<script>var renderer, camera, scene, gui, light, stats, controls, cube1, cube2var initRender = () => {renderer = new THREE.WebGLRenderer({antialias: true})renderer.setClearColor(0xeeeeee)renderer.setPixelRatio(window.devicePixelRatio)renderer.setSize(window.innerWidth, window.innerHeight)renderer.shadowMap.enabled = truedocument.body.appendChild(renderer.domElement)}var initScene = () => {scene = new THREE.Scene()scene.backgroundColor = new THREE.Color(0xa0a0a0)scene.fog = new THREE.Fog(0xa0a0a0, 5, 50)}var initCamera = () => {camera = new THREE.PerspectiveCamera(45, window.innerWidth / window.innerHeight, 0.1, 200)camera.position.set(0, 5, 15)}var initGui = () => {gui = {bump: 0.03,animation: false}var datGui = new dat.GUI()datGui.add(gui, 'bump', -1, 1).onChange(e => {cube1.material.bumpScale = e})datGui.add(gui, 'animation')}var initLight = () => {scene.add(new THREE.AmbientLight(0x444444))light = new THREE.DirectionalLight(0xffffff)light.position.set(0, 20, 10)light.castShadow = truescene.add(light)}var initModel = () => {var helper = new THREE.AxesHelper(50)scene.add(helper)// 地板var mesh = new THREE.Mesh(new THREE.PlaneBufferGeometry(200, 200), new THREE.MeshPhongMaterial({color: 0xffffff,depthWrite: false}))mesh.rotation.x = -0.5 * Math.PImesh.receiveShadow = truescene.add(mesh)// 加载地板割线var grid = new THREE.GridHelper(200, 50, 0x000000, 0x000000)grid.material.opacity = 0.2grid.material.transparent = truescene.add(grid)var bump = new THREE.TextureLoader().load('data/texture/wall/brick_bump.jpg')var normal = new THREE.TextureLoader().load('data/texture/wall/brick_diffuse.jpg')var material1 = new THREE.MeshPhongMaterial({map: normal})material1.bumpMap = bumpmaterial1.bumpScale = 0.03var geometry = new THREE.BoxGeometry(8, 8, 4)cube1 = new THREE.Mesh(geometry, material1)cube1.position.set(-5, 5, 0)scene.add(cube1)var material2 = new THREE.MeshPhongMaterial({map: normal})cube2 = new THREE.Mesh(geometry, material2)cube2.position.set(5, 5, 0)scene.add(cube2)}var initStats = () => {stats = new Stats()document.body.appendChild(stats.dom)}var initControls = () => {controls = new THREE.OrbitControls(camera, renderer.domElement)controls.enableDamping = true}var render = () => {if (gui.animation) {cube1.rotation.y += 0.01cube2.rotation.y -= 0.01}controls.update()}var animate = () => {render()stats.update()renderer.render(scene, camera)requestAnimationFrame(animate)}var onWindowResize = () => {camera.aspect = window.innerWidth / window.innerHeightcamera.updateProjectionMatrix()renderer.setSize(window.innerWidth, window.innerHeight)}var draw = () => {if (!Detector.webgl) Detector.addGetWebGLMessage()initGui()initRender()initScene()initCamera()initLight()initModel()initStats()initControls()animate()window.onresize = onWindowResize}
</script>
</html>
效果如下:

相关文章:
学习threejs,使用设置bumpMap凹凸贴图创建褶皱,实现贴图厚度效果
👨⚕️ 主页: gis分享者 👨⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨⚕️ 收录于专栏:threejs gis工程师 文章目录 一、🍀前言1.1 ☘️THREE.MeshPhongMaterial高…...
React表单联动
Ant Design 1、dependencies Form.Item 可以通过 dependencies 属性,设置关联字段。当关联字段的值发生变化时,会触发校验与更新。 一种常见的场景:注册用户表单的“密码”与“确认密码”字段。“确认密码”校验依赖于“密码”字段&#x…...
408数据结构:栈、队列和数组选择题做题笔记
408数据结构 第一章 绪论 第二章 线性表 绪论、线性表选择题做题笔记 第三章 栈、队列和数组 栈、队列和数组选择题做题笔记 文章目录 408数据结构前言 一、队列二、栈和队列的应用总结 前言 本篇文章为针对王道25数据结构课后习题的栈、队列和数组的做题笔记,后续…...
sql工具!好用!爱用!
SQLynx的界面设计简洁明了,操作逻辑清晰易懂,没有复杂的图标和按钮,想对哪部分操作就在哪里点击右键,即使你是数据库小白也能轻松上手。 尽管SQLynx是一款免费的工具,但是它的功能却丝毫不逊色于其他付费产品ÿ…...
嵌入式驱动开发详解3(pinctrl和gpio子系统)
文章目录 前言pinctrl子系统pin引脚配置pinctrl驱动详解 gpio子系统gpio属性配置gpio子系统驱动gpio子系统API函数与gpio子系统相关的of函数 pinctrl和gpio子系统的使用设备树配置驱动层部分用户层部分 前言 如果不用pinctrl和gpio子系统的话,我们开发驱动时需要先…...
【C++】IO库(一):IO类
IO 库 C 不直接处理输入输出,而是通过定义一族定义在标准库当中的类型来处理IO。 8.1 IO 类 为了支持不同种类的 IO 处理操作,除了 istream 和 ostream 之外,标准库还定义了其它 IO 类型。这些类型分别定义在三个独立的头文件当中…...
uniapp介入极光推送教程 超级详细
直接按照下面教程操作 一步一步来 很快就能 完成 下面的文章非常详细 ,我就不班门弄斧了 直接上原文链接 https://blog.csdn.net/weixin_52830464/article/details/143823231...
阿里云整理(一)
阿里云整理 1. 介绍规模 2. 专业名词2.1 专有网络VPC2.2 安全组SG2.3 云服务器ECS2.4 资源组2.5 部署集2.5 web测试 1. 介绍 阿里云是一家提供云计算和人工智能服务的科技公司,成立于2009年,总部位于杭州。它为全球客户提供全方位的云服务ÿ…...
论文笔记 网络安全图谱以及溯源算法
本文提出了一种网络攻击溯源框架,以及一种网络安全知识图谱,该图由六个部分组成,G <H,V,A,E,L,S,R>。 1|11.知识图 网络知识图由六个部分组成,…...
室内定位论文速递(11.23-11.25)
多传感器姿态估计的Delta滤波器和卡尔曼滤波器设计在球形移动测绘系统中的应用 关键词 球形机器人;姿态估计;传感器融合;卡尔曼滤波器;Delta滤波器;移动测绘;LiDAR 研究问题 球形移动测绘系统中的惯性姿态估计过滤技术尚未得到充分研究。由于其内在的滚动运动,该系统…...
英伟达推出了全新的小型语言模型家族——Hymba 1.5B
每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...
云网络基础- TCP/IP 协议
文章目录 典型服务模式TCP/IP 协议设置和查看IPIP地址的分类:IP地址组成: 网络位主机位组成克隆:产生一台新的虚拟机win2008 典型服务模式 • C/S,Client/Server架构 – 由服务器提供资源或某种功能 – 客户机使用资源或功能 TCP/IP 协议 • TCP/IP是最广泛支持的通信协议集合…...
android 音效可视化--Visualizer
Visualizer 是使应用程序能够检索当前播放音频的一部分以进行可视化。它不是录音接口,仅返回部分低质量的音频内容。但是,为了保护某些音频数据的隐私,使用 Visualizer 需要 android.permission.RECORD_AUDIO权限。传递给构造函数的音频会话 …...
Python人工智能项目报告
一、实践概述 1、实践计划和目的 在现代社会,计算机技术已成为支撑社会发展的核心力量,渗透到生活的各个领域,应关注人类福祉,确保自己的工作成果能够造福社会,同时维护安全、健康的自然环境,设计出具有包…...
DockerFile 构建基础镜像
1.准备东西 DockerFile 文件 以及安装docker环境 文件内容如下: # 使用Alpine Linux作为基础镜像 FROM --platformlinux/amd64 nginx:1.27.2-alpine # 维护者信息 LABEL maintainer"xu_yhao163.com" ENV LANG en_US.UTF-8 ENV LANGUAGE en_US:en ENV …...
卷积神经网络学习记录
目录 神经网络基础定义: 基本组成部分 工作流程 卷积层(卷积定义)【CONV】: 卷积层(Convolutional Layer) 特征提取:卷积层的主要作用是通过卷积核(或滤波器)运算提…...
5种常见的k8s云原生数据管理方案详解
Kubernetes(K8s)是云原生架构的核心组件,提供高效的容器编排和管理功能。在数据存储方面,K8s通过PersistentVolumes(PV)和PersistentVolumeClaims(PVC)机制实现数据持久化࿰…...
[C++]了解内置类型升级
内置类型升级 1.调用模板T时,为什么可以使用T()类型的匿名对象来传参2.内置类型被升级成为类后的使用事项 1.调用模板T时,为什么可以使用T()类型的匿名对象来传参 当我们在定义或声明一个函数时,如果想使用模板T类型的默认构造(例…...
docker镜像源配置、换源、dockerhub国内镜像最新可用加速源(仓库)
一、临时拉取方式 在docker pull后先拼接镜像源域名,后面拼接拉取的镜像名 $ docker pull dockerpull.org/continuumio/miniconda3 二、永久配置方式 vim修改/etc/docker/daemon.json,并重启docker服务。 # 创建目录 sudo mkdir -p /etc/docker# 写…...
什么是 WPF 中的依赖属性?有什么作用?
依赖属性(Dependency Property)是 WPF 的一个核心概念,它为传统的 .NET 属性提供了增强功能,支持绑定、样式、动画和默认值等功能。通过依赖属性,WPF 提供了一种灵活的数据驱动的方式来处理 UI 属性。 1. 什么是依赖属…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...
