丹摩征文活动|实现Llama3.1大模型的本地部署
文章目录
- 1.前言
- 2.丹摩的配置
- 3.Llama3.1的本地配置
- 4. 最终界面
丹摩
1.前言
Llama3.1是Meta 公司发布的最新开源大型语言模型,相较于之前的版本,它在规模和功能上实现了显著提升,尤其是最大的 4050亿参数版本,成为开源社区中非常强大的竞争者,能够在许多场景下与封闭模型如 OpenAI 的 GPT-4 相媲美。以下是 Llama3.1的一些主要特性:
- 上下文窗口扩展
Llama3.1支持最长 128K tokens 的上下文窗口,这使得它能够处理更长的文本内容,特别适用于长文档总结和复杂对话场景。 - 多语言支持
Llama 3.1 支持包括英语、西班牙语、法语、德语、意大利语等八种语言的生成和理解功能,非常适合全球化应用。 - 增强的推理与工具使用能力
Meta 声称 Llama 3.1 在数学计算、逻辑推理和工具调用方面表现卓越,这使其在许多基准测试中表现出色。 - 高效部署与训练优化
通过量化技术(将计算从 BF16 缩减到 FP8),Llama 3.1 的推理和训练成本显著降低,适合单节点服务器的部署。此外,它支持监督微调和生成高质量的合成数据。 - 开源与社区支持
Llama 3.1 完全开源,开发者可以通过 Meta 平台和 Hugging Face 下载模型,并在本地或云端环境中运行,充分保障数据隐私与安全。同时,Meta 提供了完善的开发工具和生态系统支持,例如支持增强的检索生成(RAG)工作流。
2.丹摩的配置
下面我会从打开丹摩平台开始一步一步的教导大家配置。
- 首先我们打开丹摩平台,然后点击创建实例。
- 进入下一个页面后点击绿框中的配置。推荐选择按需支付模式。
- 根据图片选择配置
- 开始设置镜像,平台提供多种基础镜像,便于用户快速启动应用。这些镜像都预装了必要的环境和工具,用户可以根据需求轻松选择,推荐选择绿色框选内容。
- 创建密钥对,密钥对是为了确保安全登录,可以自定义名称,选择自动生成,并将生成的私钥下载到本地计算机。
密钥创建成功后,选择新生成的密钥对,点击立即创建,稍等片刻,系统便会成功启动。 - 使用密钥对登录
7.完成
平台提供了可以直接登录的JupyterLab在线入口,让你轻松访问和管理实例。
进入终端。
3.Llama3.1的本地配置
环境创建好后。使用以下指令创建新环境:
conda activate llama3
下面安装llama3.1的依赖:
pip install langchain==0.1.15
pip install streamlit==1.36.0
pip install transformers==4.44.0
pip install accelerate==0.32.1
安装好后,下载Llama3.1-88
模型,由于平台已经预装了。可以直接使用以下指令高速在内网下载。
wget http://file.s3/damodel-openfile/Llama3/Llama-3.1-8B-Instruct.tar
完成后进行解压
tar -xf Llama-3.1-8B-Instruct.tar
Llama3的配置
创建一个名为llamaBot.py
的文件,文件内容复杂以下内容:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import streamlit as st# 创建一个标题和一个副标题
st.title("💬 LLaMA3.1 Chatbot")
st.caption("🚀 A streamlit chatbot powered by Self-LLM")# 定义模型路径
mode_name_or_path = '/root/workspace/Llama-3.1-8B-Instruct'# 定义一个函数,用于获取模型和tokenizer
@st.cache_resource
def get_model():# 从预训练的模型中获取tokenizertokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, trust_remote_code=True)tokenizer.pad_token = tokenizer.eos_token# 从预训练的模型中获取模型,并设置模型参数model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, torch_dtype=torch.bfloat16).cuda()return tokenizer, model# 加载LLaMA3的model和tokenizer
tokenizer, model = get_model()# 如果session_state中没有"messages",则创建一个包含默认消息的列表
if "messages" not in st.session_state:st.session_state["messages"] = []# 遍历session_state中的所有消息,并显示在聊天界面上
for msg in st.session_state.messages:st.chat_message(msg["role"]).write(msg["content"])# 如果用户在聊天输入框中输入了内容,则执行以下操作
if prompt := st.chat_input():# 在聊天界面上显示用户的输入st.chat_message("user").write(prompt)# 将用户输入添加到session_state中的messages列表中st.session_state.messages.append({"role": "user", "content": prompt})# 将对话输入模型,获得返回input_ids = tokenizer.apply_chat_template(st.session_state["messages"],tokenize=False,add_generation_prompt=True)model_inputs = tokenizer([input_ids], return_tensors="pt").to('cuda')generated_ids = model.generate(model_inputs.input_ids,max_new_tokens=512)generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]# 将模型的输出添加到session_state中的messages列表中st.session_state.messages.append({"role": "assistant", "content": response})# 在聊天界面上显示模型的输出st.chat_message("assistant").write(response)print(st.session_state)
在终端运行以下命令,启动streamlit服务,server.port
可以更换端口
streamlit run llamaBot.py --server.address 0.0.0.0 --server.port 1024
服务地址务必指定为0.0.0.0,否则无法通过浏览器访问
最后我们需要把内网端口映射到公网
- 进入GPU云实例页面。点击操作-更多-访问控制
- 单击添加端口,添加streamlit服务对于端口
添加成功后,通过访问链接即可打开Llama3.1Chatbot交互界面。
4. 最终界面
相关文章:

丹摩征文活动|实现Llama3.1大模型的本地部署
文章目录 1.前言2.丹摩的配置3.Llama3.1的本地配置4. 最终界面 丹摩 1.前言 Llama3.1是Meta 公司发布的最新开源大型语言模型,相较于之前的版本,它在规模和功能上实现了显著提升,尤其是最大的 4050亿参数版本,成为开源社区中非常…...
Spring Boot 2 和 Spring Boot 3 中使用 Spring Security 的区别
文章目录 Spring Boot 2 和 Spring Boot 3 中使用 Spring Security 的区别1. Jakarta EE 迁移2. Spring Security 配置方式的变化3. PasswordEncoder 加密方式的变化4. permitAll() 和 authenticated() 的变化5. 更强的默认安全设置6. Java 17 支持与语法提升7. PreAuthorize、…...

【数据结构与算法】 LeetCode:回溯
文章目录 回溯算法组合组合总和(Hot 100)组合总和 II电话号码的字母组合(Hot 100)括号生成(Hot 100)分割回文串(Hot 100)复原IP地址子集(Hot 100)全排列&…...
SpringBoot线程池的使用
SpringBoot线程池的使用 在现代Web应用开发中,特别是在使用Spring Boot框架时,合理使用线程池可以显著提高应用的性能和响应速度。线程池不仅能够减少线程创建和销毁的开销,还能有效地控制并发任务的数量,避免因线程过多而导致的…...

Neural Magic 发布 LLM Compressor:提升大模型推理效率的新工具
每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...
HttpServletRequest req和前端的关系,req.getParameter详细解释,req.getParameter和前端的关系
HttpServletRequest 对象在后端和前端之间起到了桥梁的作用,它包含了来自客户端的所有请求信息。通过 HttpServletRequest 对象,后端可以获取前端发送的请求参数、请求头、请求方法等信息,并根据这些信息进行相应的处理。以下是对 HttpServle…...
React-useEffect的使用
useEffect react提供的一个常用hook,用于在函数组件中执行副作用操作,比如数据获取、订阅或手动更改DOM。 基本用法: 接受2个参数: 一个包含命令式代码的函数(副作用函数)。一个依赖项数组,用…...
MySQL数据库与Informix:能否创建同名表?
MySQL数据库与Informix:能否创建同名表? 一、MySQL数据库中的同名表创建1. 使用CREATE TABLE ... SELECT语句2. 使用CREATE TABLE LIKE语句3. 复制表结构并选择性复制数据4. 使用同义词(Synonym)二、Informix数据库中的同名表创建1. 使用不同所有者2. 使用不同模式3. 复制表…...

爬虫实战:采集知乎XXX话题数据
目录 反爬虫的本意和其带来的挑战目标实战开发准备代码开发发现问题1. 发现问题[01]2. 发现问题[02] 解决问题1. 解决问题[01]2. 解决问题[02] 最终结果 结语 反爬虫的本意和其带来的挑战 在这个数字化时代社交媒体已经成为人们表达观点的重要渠道,对企业来说&…...

大数据新视界 -- Hive 数据桶原理:均匀分布数据的智慧(上)(9/ 30)
💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...

【小白学机器学习33】 大数定律python的 pandas.Dataframe 和 pandas.Series基础内容
目录 0 总结 0.1pd.Dataframe有一个比较麻烦琐碎的地方,就是引号 和括号 0.2 pd.Dataframe关于括号的原则 0.3 分清楚几个数据类型和对应的方法的范围 0.4 几个数据结构的构造关系 list → np.array(list) → pd.Series(np.array)/pd.Dataframe 1 python 里…...

【shodan】(五)网段利用
shodan基础(五) 声明:该笔记为up主 泷羽的课程笔记,本节链接指路。 警告:本教程仅作学习用途,若有用于非法行为的,概不负责。 nsa ip address range www.nsa.gov需科学上网 搜索网段 shodan s…...
LeetCode739. 每日温度(2024冬季每日一题 15)
给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i] 是指对于第 i 天,下一个更高温度出现在几天后。如果气温在这之后都不会升高,请在该位置用 0 来代替。 示例 1: 输入: temperatu…...

Node.js的http模块:创建HTTP服务器、客户端示例
新书速览|Vue.jsNode.js全栈开发实战-CSDN博客 《Vue.jsNode.js全栈开发实战(第2版)(Web前端技术丛书)》(王金柱)【摘要 书评 试读】- 京东图书 (jd.com) 要使用http模块,只需要在文件中通过require(http)引入即可。…...

加菲工具 - 好用免费的在线工具集合
加菲工具 https://orcc.online AI 工具 加菲工具 集合了目前主流的,免费可用的ai工具 文档处理 加菲工具 pdf转word、office与pdf互转等等工具都有链接 图片图标 加菲工具 统计了好用免费的在线工具 编码解码 加菲工具 base64编码解码、url编码解码、md5计算…...

.NET9 - 新功能体验(二)
书接上回,我们继续来聊聊.NET9和C#13带来的新变化。 01、新的泛型约束 allows ref struct 这是在 C# 13 中,引入的一项新的泛型约束功能,允许对泛型类型参数应用 ref struct 约束。 可能这样说不够直观,简单来说就是Span、ReadO…...
map和redis关系
Map 和 Redis 都是用于存储和管理数据的工具,但它们在用途、实现和应用场景上有所不同。下面详细解释 Map 和 Redis 之间的关系和区别。 1. Map 数据结构 定义 Map 是一种数据结构,用于存储键值对(key-value pairs)。每个键都是…...

《数据结构》学习系列——图(中)
系列文章目录 目录 图的遍历深度优先遍历递归算法堆栈算法 广度优先搜索 拓扑排序定义定理算法思想伪代码 关键路径基本概念关键活动有关量数学公式伪代码时间复杂性 图的遍历 从给定连通图的某一顶点出发,沿着一些边访问遍图中所有的顶点,且使每个顶点…...

探索Python的HTTP之旅:揭秘Requests库的神秘面纱
文章目录 **探索Python的HTTP之旅:揭秘Requests库的神秘面纱**第一部分:背景介绍第二部分:Requests库是什么?第三部分:如何安装Requests库?第四部分:Requests库的五个简单函数使用方法第五部分&…...

Python 爬虫从入门到(不)入狱学习笔记
爬虫的流程:从入门到入狱 1 获取网页内容1.1 发送 HTTP 请求1.2 Python 的 Requests 库1.2 实战:豆瓣电影 scrape_douban.py 2 解析网页内容2.1 HTML 网页结构2.2 Python 的 Beautiful Soup 库 3 存储或分析数据(略) 一般爬虫的基…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...

无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...

【iOS】 Block再学习
iOS Block再学习 文章目录 iOS Block再学习前言Block的三种类型__ NSGlobalBlock____ NSMallocBlock____ NSStackBlock__小结 Block底层分析Block的结构捕获自由变量捕获全局(静态)变量捕获静态变量__block修饰符forwarding指针 Block的copy时机block作为函数返回值将block赋给…...

2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版
1.题目描述 2.思路 当前的元素可以重复使用。 (1)确定回溯算法函数的参数和返回值(一般是void类型) (2)因为是用递归实现的,所以我们要确定终止条件 (3)单层搜索逻辑 二…...

Python环境安装与虚拟环境配置详解
本文档旨在为Python开发者提供一站式的环境安装与虚拟环境配置指南,适用于Windows、macOS和Linux系统。无论你是初学者还是有经验的开发者,都能在此找到适合自己的环境搭建方法和常见问题的解决方案。 快速开始 一分钟快速安装与虚拟环境配置 # macOS/…...