当前位置: 首页 > news >正文

使用Java代码操作Kafka(五):Kafka消费 offset API,包含指定 Offset 消费以及指定时间消费

文章目录

    • 1、指定 Offset 消费
    • 2、指定时间消费


1、指定 Offset 消费

auto.offset.reset = earliest | latest | none 默认是 latest
(1)earliest:自动将偏移量重置为最早的偏移量,–from-beginning
(2)latest(默认值):自动将偏移量重置为最新偏移量。
(3)none:如果未找到消费者组的先前偏移量,则向消费者抛出异常

这个参数的力度太大了,不是从头,就是从尾
kafka提供了seek方法,可以让我们从分区的固定位置开始消费
seek(TopicPartition topicPartition,offset offset)

示例代码:

package com.bigdata.kafka.consumer;import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.ArrayList;
import java.util.Properties;
import java.util.Set;public class CustomConsumerSeek {public static void main(String[] args) {Properties properties = new Properties();// 连接kafkaproperties.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"node01:9092");// 字段反序列化   key 和  valueproperties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());// 关闭自动提交offsetproperties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());// 配置消费者组(组名任意起名) 必须properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test");properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,false);KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<String, String>(properties);// 2 订阅一个主题ArrayList<String> topics = new ArrayList<>();topics.add("first");kafkaConsumer.subscribe(topics);// 执行计划// 此时的消费计划是空的,因为没有时间生成Set<TopicPartition> assignment = kafkaConsumer.assignment();while(assignment.size() == 0){// 这个本身是拉取数据的代码,此处可以帮助快速构建分区方案出来kafkaConsumer.poll(Duration.ofSeconds(1));// 一直获取它的分区方案,什么时候有了,就什么时候跳出这个循环assignment = kafkaConsumer.assignment();}// 获取所有分区的offset =5 以后的数据/*for (TopicPartition tp:assignment) {kafkaConsumer.seek(tp,5);}*/// 获取分区0的offset =5 以后的数据//kafkaConsumer.seek(new TopicPartition("bigdata",0),5);for (TopicPartition tp:assignment) {if(tp.partition() == 0){kafkaConsumer.seek(tp,5);}}while(true){//1 秒中向kafka拉取一批数据ConsumerRecords<String, String> records = kafkaConsumer.poll(Duration.ofSeconds(1));for (ConsumerRecord<String,String> record :records) {// 打印一条数据System.out.println(record);// 可以打印记录中的很多内容,比如 key  value  offset topic 等信息System.out.println(record.value());}}}
}

2、指定时间消费

示例代码:

package com.bigdata.consumer;import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.*;/***  从某个特定的时间开始进行消费*/
public class Customer05 {public static void main(String[] args) {// 其实就是mapProperties properties = new Properties();// 连接kafkaproperties.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"node01:9092");// 字段反序列化   key 和  valueproperties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());// 配置消费者组(组名任意起名) 必须properties.put(ConsumerConfig.GROUP_ID_CONFIG, "testf");// 指定分区的分配方案  为轮询策略//properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, "org.apache.kafka.clients.consumer.RoundRobinAssignor");// 指定分区的分配策略为:Sticky(粘性)ArrayList<String> startegys = new ArrayList<>();startegys.add("org.apache.kafka.clients.consumer.StickyAssignor");properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, startegys);// 创建一个kafka消费者的对象KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<String, String>(properties);// 消费者消费的是kafka集群的数据,消费哪个主题的数据呢?List<String> topics = new ArrayList<>();topics.add("five");// list总可以设置多个主题的名称kafkaConsumer.subscribe(topics);// 因为消费者是不停的消费,所以是while true// 指定了获取分区数据的起始位置。// 这样写会报错的,因为前期消费需要指定计划,指定计划需要时间// 此时的消费计划是空的,因为没有时间生成Set<TopicPartition> assignment = kafkaConsumer.assignment();while(assignment.size() == 0){// 这个本身是拉取数据的代码,此处可以帮助快速构建分区方案出来kafkaConsumer.poll(Duration.ofSeconds(1));// 一直获取它的分区方案,什么时候有了,就什么时候跳出这个循环assignment = kafkaConsumer.assignment();}Map<TopicPartition, Long> hashMap = new HashMap<>();for (TopicPartition partition:assignment) {hashMap.put(partition,System.currentTimeMillis()- 60*60*1000);}Map<TopicPartition, OffsetAndTimestamp> map = kafkaConsumer.offsetsForTimes(hashMap);for (TopicPartition partition:assignment) {OffsetAndTimestamp offsetAndTimestamp = map.get(partition);kafkaConsumer.seek(partition,offsetAndTimestamp.offset());}while(true){// 每隔一秒钟,从kafka 集群中拉取一次数据,有可能拉取多条数据ConsumerRecords<String, String> records = kafkaConsumer.poll(Duration.ofSeconds(1));// 循环打印每一条数据for (ConsumerRecord record:records) {// 打印数据中的值System.out.println(record.value());System.out.println(record.offset());// 打印一条数据System.out.println(record);}}}
}

相关文章:

使用Java代码操作Kafka(五):Kafka消费 offset API,包含指定 Offset 消费以及指定时间消费

文章目录 1、指定 Offset 消费2、指定时间消费 1、指定 Offset 消费 auto.offset.reset earliest | latest | none 默认是 latest &#xff08;1&#xff09;earliest&#xff1a;自动将偏移量重置为最早的偏移量&#xff0c;–from-beginning &#xff08;2&#xff09;lates…...

Ubuntu安装不同版本的opencv,并任意切换使用

参考&#xff1a; opencv笔记&#xff1a;ubuntu安装opencv以及多版本共存 | 高深远的博客 https://zhuanlan.zhihu.com/p/604658181 安装不同版本opencv及共存、切换并验证。_pkg-config opencv --modversion-CSDN博客 Ubuntu下多版本OpenCV共存和切换_ubuntu20如同时安装o…...

突破内存限制:Mac Mini M2 服务器化实践指南

本篇文章&#xff0c;我们聊聊如何使用 Mac Mini M2 来实现比上篇文章性价比更高的内存服务器使用&#xff0c;分享背后的一些小的思考。 希望对有类似需求的你有帮助。 写在前面 在上文《ThinkPad Redis&#xff1a;构建亿级数据毫秒级查询的平民方案》中&#xff0c;我们…...

【排版教程】Word、WPS 分节符(奇数页等) 自动变成 分节符(下一页) 解决办法

毕业设计排版时&#xff0c;一般要求每章节的起始页为奇数页&#xff0c;空白页不显示页眉和页脚。具体做法如下&#xff1a; 1 Word 在一个章节的内容完成后&#xff0c;在【布局】中&#xff0c;点击【分隔符】&#xff0c;然后选择【奇数页】 这样在下一章节开始的时&…...

【在Linux世界中追寻伟大的One Piece】多线程(二)

目录 1 -> 分离线程 2 -> Linux线程互斥 2.1 -> 进程线程间的互斥相关背景概念 2.2 -> 互斥量mutex 2.3 -> 互斥量的接口 2.4 -> 互斥量实现原理探究 3 -> 可重入VS线程安全 3.1 -> 概念 3.2 -> 常见的线程不安全的情况 3.3 -> 常见的…...

flink学习(8)——窗口函数

增量聚合函数 ——指窗口每进入一条数据就计算一次 例如&#xff1a;要计算数字之和&#xff0c;进去一个12 计算结果为20&#xff0c; 再进入一个7 ——结果为27 reduce aggregate(aggregateFunction) package com.bigdata.day04;public class _04_agg函数 {public static …...

「实战应用」如何用图表控件LightningChart .NET实现散点图?(一)

LightningChart .NET完全由GPU加速&#xff0c;并且性能经过优化&#xff0c;可用于实时显示海量数据-超过10亿个数据点。 LightningChart包括广泛的2D&#xff0c;高级3D&#xff0c;Polar&#xff0c;Smith&#xff0c;3D饼/甜甜圈&#xff0c;地理地图和GIS图表以及适用于科…...

鸿蒙Native使用Demo

DevecoStudio使用Native 今天,给大家带来的是关于DevecoStudio中使用Native进行开发 个人拙见:为什么要使用Native?无论是JS还是TS在复杂的情况下运行速度,肯定不如直接操作内存的C/C的运行速度快,所以,会选择使用Native;这里面的过程是什么?通过映射转化,使用napi提供的接口…...

29.UE5蓝图的网络通讯,多人自定义事件,变量同步

3-9 蓝图的网络通讯、多人自定义事件、变量同步_哔哩哔哩_bilibili 目录 1.网络通讯 1.1玩家Pawn之间的同步 1.2事件同步 1.3UI同步 1.4组播 1.5变量同步 1.网络通讯 1.1玩家Pawn之间的同步 创建一个第三人称项目 将网络模式更改为监听服务器&#xff0c;即将房主作为…...

Scala—列表(可变ListBuffer、不可变List)用法详解

Scala集合概述-链接 大家可以点击上方链接&#xff0c;先对Scala的集合有一个整体的概念&#x1f923;&#x1f923;&#x1f923; 在 Scala 中&#xff0c;列表&#xff08;List&#xff09;分为不可变列表&#xff08;List&#xff09;和可变列表&#xff08;ListBuffer&…...

【论文复现】偏标记学习+图像分类

&#x1f4dd;个人主页&#x1f339;&#xff1a;Eternity._ &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; ❀ 偏标记学习图像分类 概述算法原理核心逻辑效果演示使用方式参考文献 概述 本文复现论文 Progressive Identification of True Labels for Pa…...

C嘎嘎探索篇:栈与队列的交响:C++中的结构艺术

C嘎嘎探索篇&#xff1a;栈与队列的交响&#xff1a;C中的结构艺术 前言&#xff1a; 小编在之前刚完成了C中栈和队列&#xff08;stack和queue&#xff09;的讲解&#xff0c;忘记的小伙伴可以去我上一篇文章看一眼的&#xff0c;今天小编将会带领大家吹奏栈和队列的交响&am…...

AIGC-----AIGC在虚拟现实中的应用前景

AIGC在虚拟现实中的应用前景 引言 随着人工智能生成内容&#xff08;AIGC&#xff09;的快速发展&#xff0c;虚拟现实&#xff08;VR&#xff09;技术的应用也迎来了新的契机。AIGC与VR的结合为创造沉浸式体验带来了全新的可能性&#xff0c;这种组合不仅极大地降低了VR内容的…...

Django 路由层

1. 路由基础概念 URLconf (URL 配置)&#xff1a;Django 的路由系统是基于 urls.py 文件定义的。路径匹配&#xff1a;通过模式匹配 URL&#xff0c;并将请求传递给对应的视图处理函数。命名路由&#xff1a;每个路由可以定义一个名称&#xff0c;用于反向解析。 2. 基本路由配…...

《硬件架构的艺术》笔记(八):消抖技术

简介 在电子设备中两个金属触点随着触点的断开闭合便产生了多个信号&#xff0c;这就是抖动。 消抖是用来确保每一次断开或闭合触点时只有一个信号起作用的硬件设备或软件。&#xff08;就是每次断开闭合只对应一个操作&#xff09;。 抖动在某些模拟和逻辑电路中可能产生问…...

Spring 与 Spring MVC 与 Spring Boot三者之间的区别与联系

一.什么是Spring&#xff1f;它解决了什么问题&#xff1f; 1.1什么是Spring&#xff1f; Spring&#xff0c;一般指代的是Spring Framework 它是一个开源的应用程序框架&#xff0c;提供了一个简易的开发方式&#xff0c;通过这种开发方式&#xff0c;将避免那些可能致使代码…...

【算法】连通块问题(C/C++)

目录 连通块问题 解决思路 步骤&#xff1a; 初始化&#xff1a; DFS函数&#xff1a; 复杂度分析 代码实现&#xff08;C&#xff09; 题目链接&#xff1a;2060. 奶牛选美 - AcWing题库 解题思路&#xff1a; AC代码&#xff1a; 题目链接&#xff1a;687. 扫雷 -…...

如何选择黑白相机和彩色相机

我们在选择成像解决方案时黑白相机很容易被忽略&#xff0c;因为许多新相机提供鲜艳的颜色&#xff0c;鲜明的对比度和改进的弱光性能。然而&#xff0c;有许多应用&#xff0c;选择黑白相机将是更好的选择&#xff0c;因为他们产生更清晰的图像&#xff0c;更好的分辨率&#…...

Rust 力扣 - 740. 删除并获得点数

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 首先对于这题我们如果将所有点数装入一个切片f中&#xff0c;该切片f中的i号下标表示所有点数为i的点数之和 那么这题就转换成了打家劫舍这道题&#xff0c;也就是求选择了切片中某个下标的元素后&#xff0c;该…...

OpenCV从入门到精通实战(七)——探索图像处理:自定义滤波与OpenCV卷积核

本文主要介绍如何使用Python和OpenCV库通过卷积操作来应用不同的图像滤波效果。主要分为几个步骤&#xff1a;图像的读取与处理、自定义卷积函数的实现、不同卷积核的应用&#xff0c;以及结果的展示。 卷积 在图像处理中&#xff0c;卷积是一种重要的操作&#xff0c;它通过…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 &#xff08;一&#xff09;项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台&#xff0c;其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言&#xff0c;首次接触 OpenBCI 设备时&#xff0c;往…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storms…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用

在工业制造领域&#xff0c;无损检测&#xff08;NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统&#xff0c;以非接触式光学麦克风技术为核心&#xff0c;打破传统检测瓶颈&#xff0c;为半导体、航空航天、汽车制造等行业提供了高灵敏…...

goreplay

1.github地址 https://github.com/buger/goreplay 2.简单介绍 GoReplay 是一个开源的网络监控工具&#xff0c;可以记录用户的实时流量并将其用于镜像、负载测试、监控和详细分析。 3.出现背景 随着应用程序的增长&#xff0c;测试它所需的工作量也会呈指数级增长。GoRepl…...

2025.6.9总结(利与弊)

凡事都有两面性。在大厂上班也不例外。今天找开发定位问题&#xff0c;从一个接口人不断溯源到另一个 接口人。有时候&#xff0c;不知道是谁的责任填。将工作内容分的很细&#xff0c;每个人负责其中的一小块。我清楚的意识到&#xff0c;自己就是个可以随时替换的螺丝钉&…...